File size: 16,524 Bytes
1baa185
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e4201c60d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4201c57700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698537365392384006, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA600wP5vexj5ie089la2VvzxqpL9ie089DlEpvz0O+z4nmU89JWRNPw7Zgz9JqE89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaDidPCWPmL+5DIy/Nhcpv7xJN7+ieos+4L96v34dXT4sVGo/6xDPv1TT1D/dbTI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABCTyXAdZDev98O+T90Cd6+ErqSPSbWZb1biu8/600wP5vexj5ie089mByou5sE07x/o/67Gu2jPNPahjyNYa48+srwu/IgBLyxjuE7voeJPpsokz9gPEO/8TH1PRK6+T0nGjo9tQz5vpWtlb88aqS/YntPPZocqLubBNO8SanzuwrtozzL2oY8jWGuPPrK8LvyIAS8mI/hO/spsD4JrAq/DjRKvyfroT9rsuu+TRMovW359r4OUSm/PQ77PieZTz1Oabe74FvRvNYuObxjQLA8/Ph+PI1hrjyLy/C7siAEvGJDuTsBFz7AXN7Rv+Tr3z/d2qk9E9oXPNokqbvNQoI/JWRNPw7Zgz9JqE89gia3u3pv07zcOqq7NGKiPOQMkDymJao8QbVavB0BO7zr3e47lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.68868893  0.3884171   0.05065478]\n [-1.1693598  -1.284492    0.05065478]\n [-0.66139305  0.490343    0.05068317]\n [ 0.80230933  1.0300615   0.0506976 ]]", "desired_goal": "[[ 0.01919194 -1.1918684  -1.0941383 ]\n [-0.6605104  -0.71596885  0.27242   ]\n [-0.9794903   0.21593282  0.91534686]\n [-1.6177038   1.6626992   0.6969889 ]]", "observation": "[[-2.5829625  -1.7387835   1.9457663  -0.43366587  0.07164396 -0.05611243\n   1.8714098   0.68868893  0.3884171   0.05065478 -0.00513036 -0.02575903\n  -0.00777096  0.02001052  0.01646177  0.02128675 -0.00734842 -0.0080645\n   0.00688347]\n [ 0.26861376  1.1496767  -0.76264     0.11972416  0.12193693  0.0454351\n  -0.48642507 -1.1693598  -1.284492    0.05065478 -0.00513036 -0.02575903\n  -0.00743595  0.02001049  0.01646175  0.02128675 -0.00734842 -0.0080645\n   0.00688357]\n [ 0.3440703  -0.54168755 -0.7898568   1.2649888  -0.4603456  -0.04103403\n  -0.48237172 -0.66139305  0.490343    0.05068317 -0.00559727 -0.0255565\n  -0.01130267  0.02151508  0.01556229  0.02128675 -0.00734848 -0.00806444\n   0.00565378]\n [-2.970154   -1.6395984   1.7493863   0.08293698  0.0092683  -0.00516186\n   1.0176636   0.80230933  1.0300615   0.0506976  -0.00558931 -0.02580999\n  -0.005195    0.01982222  0.01758427  0.02076991 -0.01334888 -0.01141384\n   0.00728964]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcP4eukyXDz0K16M8gnQPvoN9ab0K16M8dp8RPgWM470K16M87pDMPJbHEr4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZ0m8ve4z5L36MVo+bTntvN64h72jmyA+GzbSO2lOYL0K16M88SPpPPvwTz1Thw8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAcP4eukyXDz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAIJ0D76DfWm9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB2nxE+BYzjvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA7pDMPJbHEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.00060651  0.0350564   0.02      ]\n [-0.14009288 -0.05700446  0.02      ]\n [ 0.14220986 -0.11110691  0.02      ]\n [ 0.02497145 -0.14333948  0.02      ]]", "desired_goal": "[[-0.09193688 -0.11142717  0.21308127]\n [-0.02895805 -0.06627057  0.1568437 ]\n [ 0.00641514 -0.05476228  0.02      ]\n [ 0.02845952  0.05076693  0.14016466]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -6.0651358e-04\n   3.5056397e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -1.4009288e-01\n  -5.7004463e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  1.4220986e-01\n  -1.1110691e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  2.4971452e-02\n  -1.4333948e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CrDYIW56MSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDcApKBd2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDpY593KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDjrLZBcBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDrJwS8J2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrDx0CaJAMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD/svysjndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrD57QC0WudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEA5L7GeddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEFzoMa0hdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrEGMotthvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrETQH7gsLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrENr0SRKZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEUtVinYQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEZT3h4t6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEmP+4smOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEgY0l7dBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEnd9Ujs2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrEtBdt2s8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE6BJqZc+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE0RsVLzxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE7SU9pyqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrE/tihFmWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFMqEeyRkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFGwDeTFEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFNmViWmhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFSFYlpoLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFfFx4ptrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFZdzwMH9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFgTWPLgXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFlIr4FibdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFyE/8l5XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFsH1WbPQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrFy5pJwsHdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrFzcfms/6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrF4SCOFQEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGFRhc7hfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrF/gQxvehdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGG1KoQ4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGKtfPX05dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGXrBbfP5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGRv1+RYBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGZEadc0MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGdvkBCD3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGqu5SWJKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGlDUVi4KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGstOM2m6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrGxckt29tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG+eOwPiDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrG4lOoHcDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHAK3EyckdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHESUTtb+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHRYNiH6/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHLhN21UmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHTO2JBPbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHXY0uUUxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHkWEkB0ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHem1x82KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHmKhL5ARdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHrtb9qDcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH4/TCtRvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrHzhMSK3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrH7IU8FINdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIG1FhG6PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIU2iL2pRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIQFjVhCudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIZxe1KGtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIk3225QQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIywBHTZydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrIt1UVBUrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrI32gWac7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJDa1b7j1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJRrWiDdydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJNd6kZaWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJXzrE9+xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJgaguh9LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJtdaUzKtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJnu/DcdpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJvBL5AQhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJ0ETg2qDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKBMijcmCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrJ7j9GZuydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKDNZ/0/XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKId43WFwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKVWKl54XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKPcwxnFpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKXJWvKU3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKcrRrrPddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKqK4pc5bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKkhIWgvldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKrmAbyYpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrKvxyfcvedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK81iONo8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK3JtBOYZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrK+t+1Bt2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLDcxj8UFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLQk078vVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLK8Z9/jLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrLSve54GEdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CrLTGYrrgPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True]", "bounded_above": "[ True  True  True  True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}