File size: 1,636 Bytes
08547af ff284db 08547af 0b4cc63 ff284db 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 08547af 0b4cc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
base_model: stabilityai/stable-diffusion-xl-base-1.0
license: cc-by-nc-nd-4.0
---
# ⚡ FlashDiffusion: FlashSDXL ⚡
Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
This model is a **26.4M** LoRA distilled version of [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model that is able to generate images in **4 steps**. The main purpose of this model is to reproduce the main results of the paper.
<p align="center">
<img style="width:700px;" src="images/hf_grid.png">
</p>
# How to use?
The model can be used using the `StableDiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **2-4 steps**.
```python
from diffusers import DiffusionPipeline, LCMScheduler
adapter_id = "jasperai/flash-sd"
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
use_safetensors=True,
)
pipe.scheduler = LCMScheduler.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="scheduler",
timestep_spacing="trailing",
)
pipe.to("cuda")
# Fuse and load LoRA weights
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
prompt = "A raccoon reading a book in a lush forest."
image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
```
<p align="center">
<img style="width:400px;" src="images/raccoon.png">
</p>
# Training Details
## License
This model is released under the the Creative Commons BY-NC license.
|