jarkrandel commited on
Commit
1b782e1
1 Parent(s): dc5e5ce

PPO LLv2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.50 +/- 13.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf27117d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf27117dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf27117e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf27117ee0>", "_build": "<function ActorCriticPolicy._build at 0x7fdf27117f70>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf2711c040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf2711c0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf2711c160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf2711c1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf2711c280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf2711c310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdf2711b0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671588116874982501, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOdv7wpHH+6sxzjuYvmE7VRfyE7UtkDOQAAgD8AAIA/moEePXsSiLrlMvW384zqstmbYroqhw43AACAPwAAgD+aBlG9XAsNumbliTuPjgQ3zTObuV0Rn7oAAIA/AACAP5rXLD3hEI+6rkvEurMrv7XevH+61rbjOQAAgD8AAIA/ZmUnvcPtFLr4T2E8q+tbtTfHE7sl6Fu0AAAAAAAAgD9mmr+7XNsSuibRx7t7MX44/Cp6ulDYfTkAAIA/AACAP/Pm770Fh5s/pAQdvk8cib6AeLM8A7I7vQAAAAAAAAAAwInPvY8ScLq48lC7NQYHtunAcLujxXo1AACAPwAAgD+zXQE9KdBquqAunbqXrZm1L+GxOo5suDkAAIA/AACAPzMM2rxHOXQ/Zp3HvSE/gr5wDUm9D3xDvAAAAAAAAAAATaQdvSlgOLpr0uO6IB25tSgPprmVAgY6AACAPwAAgD8zr+g84cCQupHgorrXv561b9SIuSbIvDkAAIA/AACAP6a+zL3DaRS62f0ePOF5VTaBqpA5QtdENQAAgD8AAIA/Zh2cPKTBqD9GM/g9g4ifvmnWwTzpBaU9AAAAAAAAAADz6IM9SBGCuvsqCDzBGTOzoG4hO/NyRrMAAIA/AACAP0DEkz32ZEG6GoDQOs8BcTZBNKQ62rDwuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQkC+hAqBZkCUhpRSlIwBbJRN6AOMAXSUR0CTQ4w6ySmqdX2UKGgGaAloD0MIlBKCVfUTXUCUhpRSlGgVTegDaBZHQJNGeHYYixF1fZQoaAZoCWgPQwjsia4LPyA6QJSGlFKUaBVNEAFoFkdAk07TkdV/+nV9lChoBmgJaA9DCKN1VDXBvGBAlIaUUpRoFU3oA2gWR0CTUlhmXgLrdX2UKGgGaAloD0MIZLDiVGtuX0CUhpRSlGgVTegDaBZHQJNWHEJjUd91fZQoaAZoCWgPQwgT8db5tyldQJSGlFKUaBVN6ANoFkdAk1a9wR5C4XV9lChoBmgJaA9DCEuuYvGbV2NAlIaUUpRoFU3oA2gWR0CTV1Z8KG+LdX2UKGgGaAloD0MIWVGDaZgSYECUhpRSlGgVTegDaBZHQJNXs+1SflJ1fZQoaAZoCWgPQwiqtpvgm1xlQJSGlFKUaBVN6ANoFkdAk1mXiFTNuHV9lChoBmgJaA9DCH8zMV2ITVJAlIaUUpRoFUvoaBZHQJNbfLW7OFB1fZQoaAZoCWgPQwgyxofZy8ZhQJSGlFKUaBVN6ANoFkdAk1yd2xIJ7nV9lChoBmgJaA9DCJOMnIX913FAlIaUUpRoFU3gAWgWR0CTXLb212JSdX2UKGgGaAloD0MIuVSlLa65QECUhpRSlGgVTRIBaBZHQJNzeuZCv5h1fZQoaAZoCWgPQwjrxOV4BcNgQJSGlFKUaBVN6ANoFkdAk3XE8A7xNXV9lChoBmgJaA9DCHmxMETO7mVAlIaUUpRoFU3oA2gWR0CTeJtHhCMQdX2UKGgGaAloD0MIV7H4TWGrYUCUhpRSlGgVTegDaBZHQJOBoOZssQN1fZQoaAZoCWgPQwhzEkpfiN1hQJSGlFKUaBVN6ANoFkdAk4tAKa5PM3V9lChoBmgJaA9DCCyeeqRB2GBAlIaUUpRoFU3oA2gWR0CTi9e8f3evdX2UKGgGaAloD0MIkIe+u5XwXECUhpRSlGgVTegDaBZHQJOO3/n4fwJ1fZQoaAZoCWgPQwhqvd9oR7NlQJSGlFKUaBVN6ANoFkdAk5NSy2QXAXV9lChoBmgJaA9DCCcXY2AdMmZAlIaUUpRoFU3oA2gWR0CTpyxzq8lHdX2UKGgGaAloD0MIlfJaCd2yY0CUhpRSlGgVTegDaBZHQJOn8KVpsXV1fZQoaAZoCWgPQwiu8C4XcZJkQJSGlFKUaBVN6ANoFkdAk6ipfICEH3V9lChoBmgJaA9DCEbT2cngdWJAlIaUUpRoFU3oA2gWR0CTqRn/T9bYdX2UKGgGaAloD0MIl5APejYdZkCUhpRSlGgVTegDaBZHQJOrdOIqLCN1fZQoaAZoCWgPQwhwRPesa8VgQJSGlFKUaBVN6ANoFkdAk63jIzWPLnV9lChoBmgJaA9DCEz/klSmS2JAlIaUUpRoFU3oA2gWR0CTr0pjc2zfdX2UKGgGaAloD0MI7dgIxOuSZECUhpRSlGgVTegDaBZHQJOvaTV2A5J1fZQoaAZoCWgPQwhwfO2Zpd5hQJSGlFKUaBVN6ANoFkdAk7Ohd6cAinV9lChoBmgJaA9DCLRYiuQrSl9AlIaUUpRoFU3oA2gWR0CTyLFGoaUBdX2UKGgGaAloD0MIqvOo+L/0ZkCUhpRSlGgVTegDaBZHQJPLsKpkwvh1fZQoaAZoCWgPQwjNzMzMzFZfQJSGlFKUaBVN6ANoFkdAk9W58v24/nV9lChoBmgJaA9DCBE5fT0fBXJAlIaUUpRoFU0CAmgWR0CT2q1KXfIkdX2UKGgGaAloD0MIvVRszGvqY0CUhpRSlGgVTegDaBZHQJPfLGhmGud1fZQoaAZoCWgPQwgm32xz43BiQJSGlFKUaBVN6ANoFkdAk9+oC6pYLnV9lChoBmgJaA9DCNQs0O6Qd2RAlIaUUpRoFU3oA2gWR0CT4iqJuVHGdX2UKGgGaAloD0MI9wZfmEwnZ0CUhpRSlGgVTegDaBZHQJPlshJRO1x1fZQoaAZoCWgPQwgqHhfVov5kQJSGlFKUaBVN6ANoFkdAk/lc1XNkfHV9lChoBmgJaA9DCKKyYU3lSGZAlIaUUpRoFU3oA2gWR0CT+iukDZDidX2UKGgGaAloD0MInnsPl5xTZECUhpRSlGgVTegDaBZHQJP69A2Q4jt1fZQoaAZoCWgPQwgCKhxBqtVkQJSGlFKUaBVN6ANoFkdAk/21DneSCHV9lChoBmgJaA9DCHB9WG9Ug2FAlIaUUpRoFU3oA2gWR0CUAAQuEmICdX2UKGgGaAloD0MIdha9UwFTYECUhpRSlGgVTegDaBZHQJQBQ2pAD7t1fZQoaAZoCWgPQwhn1lJAWnhoQJSGlFKUaBVN6ANoFkdAlAFeS0Sh8XV9lChoBmgJaA9DCPAxWHGqOmRAlIaUUpRoFU3oA2gWR0CUBTncclw+dX2UKGgGaAloD0MIv2GiQQrBW0CUhpRSlGgVTegDaBZHQJQaOeUY8+11fZQoaAZoCWgPQwiEvB5MCmNkQJSGlFKUaBVN6ANoFkdAlBz0z41xbXV9lChoBmgJaA9DCC5XPzZJ5mRAlIaUUpRoFU3oA2gWR0CUJUii7CizdX2UKGgGaAloD0MIJCh+jDnLYkCUhpRSlGgVTegDaBZHQJQpJ08vEjx1fZQoaAZoCWgPQwjBGmfTEaBgQJSGlFKUaBVN6ANoFkdAlCyIYrJ8v3V9lChoBmgJaA9DCOQSRx5IuHFAlIaUUpRoFU0fAmgWR0CULKRiPQv6dX2UKGgGaAloD0MIqbwd4TT9YkCUhpRSlGgVTegDaBZHQJQs4+zMRpV1fZQoaAZoCWgPQwj3jhoTYpFlQJSGlFKUaBVN6ANoFkdAlC7xnanJk3V9lChoBmgJaA9DCP1s5LqpNGVAlIaUUpRoFU3oA2gWR0CUMeKNQ0oCdX2UKGgGaAloD0MIYqJBCp5OR0CUhpRSlGgVTREBaBZHQJQ7uZRbbDd1fZQoaAZoCWgPQwjFrYIY6E5rQJSGlFKUaBVNPwNoFkdAlEBm/ag263V9lChoBmgJaA9DCAVsByN2KmFAlIaUUpRoFU3oA2gWR0CUQtbblA/tdX2UKGgGaAloD0MIiQlq+BbZYUCUhpRSlGgVTegDaBZHQJRDg4T9KmN1fZQoaAZoCWgPQwiXxi+8khhhQJSGlFKUaBVN6ANoFkdAlEQfViF0xXV9lChoBmgJaA9DCNnuHqB7nGVAlIaUUpRoFU3oA2gWR0CUSIoybhFWdX2UKGgGaAloD0MIBMk7h7LgZUCUhpRSlGgVTegDaBZHQJRJ6gg5imV1fZQoaAZoCWgPQwg+y/Pg7n9gQJSGlFKUaBVN6ANoFkdAlE4S1Z1V53V9lChoBmgJaA9DCLwi+N9KFkhAlIaUUpRoFUvqaBZHQJRPSovSMLp1fZQoaAZoCWgPQwjvchHfiYlCQJSGlFKUaBVNKAFoFkdAlFBPmLcbi3V9lChoBmgJaA9DCDNQGf8+HV9AlIaUUpRoFU3oA2gWR0CUUFzFMqSYdX2UKGgGaAloD0MIXg8mxUdZYUCUhpRSlGgVTegDaBZHQJRloRChN/R1fZQoaAZoCWgPQwiPNSODXF9iQJSGlFKUaBVN6ANoFkdAlG1zJp35e3V9lChoBmgJaA9DCE8fgT98XGNAlIaUUpRoFU3oA2gWR0CUcS7q6e5GdX2UKGgGaAloD0MIGhnkLsLabUCUhpRSlGgVTakDaBZHQJRxPWOIZZV1fZQoaAZoCWgPQwiFmbZ/Jd5xQJSGlFKUaBVNxgFoFkdAlHH/T9bX6XV9lChoBmgJaA9DCPg0Jy8yaF9AlIaUUpRoFU3oA2gWR0CUdK4LThHcdX2UKGgGaAloD0MI4ZaPpKS4Z0CUhpRSlGgVTegDaBZHQJR2lfPX05F1fZQoaAZoCWgPQwjdzynIz+xfQJSGlFKUaBVN6ANoFkdAlHlv3ztkWnV9lChoBmgJaA9DCDPBcK5hnm5AlIaUUpRoFU2aAmgWR0CUgic4o7V8dX2UKGgGaAloD0MItABtq1kyZUCUhpRSlGgVTegDaBZHQJSCdtix3V11fZQoaAZoCWgPQwjMXUvIBwtvQJSGlFKUaBVN/wJoFkdAlIMrp3X7L3V9lChoBmgJaA9DCGQ730+NpURAlIaUUpRoFUv7aBZHQJSDfdoFmnR1fZQoaAZoCWgPQwhuv3yy4qNoQJSGlFKUaBVN6ANoFkdAlIhPQv6CUXV9lChoBmgJaA9DCKr0E85u7ltAlIaUUpRoFU3oA2gWR0CUiMthNM4+dX2UKGgGaAloD0MIww5j0t+IXkCUhpRSlGgVTegDaBZHQJSS6ZYxL011fZQoaAZoCWgPQwgttd5vNBNiQJSGlFKUaBVN6ANoFkdAlJP/lp48l3V9lChoBmgJaA9DCNifxOfOBmJAlIaUUpRoFU3oA2gWR0CUlA3H7xd6dX2UKGgGaAloD0MIHEC/7992YECUhpRSlGgVTegDaBZHQJSpZFUhmoR1fZQoaAZoCWgPQwjjNEQV/uFnQJSGlFKUaBVN6ANoFkdAlLGyi/O+qXV9lChoBmgJaA9DCBS0yeGT8k9AlIaUUpRoFU0JAWgWR0CUszIV/MGHdX2UKGgGaAloD0MI662BrZKbY0CUhpRSlGgVTegDaBZHQJS1j9l2/zt1fZQoaAZoCWgPQwjz5QXYx2hmQJSGlFKUaBVN6ANoFkdAlLWeKbayr3V9lChoBmgJaA9DCJXUCWiih2NAlIaUUpRoFU3oA2gWR0CUtmKZDzAfdX2UKGgGaAloD0MIj26ERUVTZ0CUhpRSlGgVTegDaBZHQJS5Gx/ustF1fZQoaAZoCWgPQwg/qIsUyjhjQJSGlFKUaBVN6ANoFkdAlL3fh2nsLXV9lChoBmgJaA9DCPlISnoY3kNAlIaUUpRoFUv7aBZHQJTCOtYB/7V1fZQoaAZoCWgPQwig4GJFDdRkQJSGlFKUaBVN6ANoFkdAlMaSpR4yGnV9lChoBmgJaA9DCGraxTTT5mJAlIaUUpRoFU3oA2gWR0CUxuTr3TNMdX2UKGgGaAloD0MIbjE/NzQmZ0CUhpRSlGgVTegDaBZHQJTHod92HL11fZQoaAZoCWgPQwiMvKyJBRdmQJSGlFKUaBVN6ANoFkdAlMf0mdAgPnV9lChoBmgJaA9DCONV1jbFo2BAlIaUUpRoFU3oA2gWR0CUzMWbwz+FdX2UKGgGaAloD0MIxm8KK5V9aECUhpRSlGgVTegDaBZHQJTNQR15jYt1fZQoaAZoCWgPQwi29Giqp1dkQJSGlFKUaBVN6ANoFkdAlNmQJokAxXV9lChoBmgJaA9DCKH2WzvRamFAlIaUUpRoFU3oA2gWR0CU2aJ8OTaCdX2UKGgGaAloD0MIuMg9XV3PZECUhpRSlGgVTegDaBZHQJTc8S8J2Md1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2066234f18ed8ccbcbb7f524b2a5fcd19f6a65b94a536df512448262c1623e8c
3
+ size 147214
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf27117d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf27117dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf27117e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf27117ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdf27117f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdf2711c040>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf2711c0d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdf2711c160>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf2711c1f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf2711c280>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf2711c310>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fdf2711b0f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671588116874982501,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOdv7wpHH+6sxzjuYvmE7VRfyE7UtkDOQAAgD8AAIA/moEePXsSiLrlMvW384zqstmbYroqhw43AACAPwAAgD+aBlG9XAsNumbliTuPjgQ3zTObuV0Rn7oAAIA/AACAP5rXLD3hEI+6rkvEurMrv7XevH+61rbjOQAAgD8AAIA/ZmUnvcPtFLr4T2E8q+tbtTfHE7sl6Fu0AAAAAAAAgD9mmr+7XNsSuibRx7t7MX44/Cp6ulDYfTkAAIA/AACAP/Pm770Fh5s/pAQdvk8cib6AeLM8A7I7vQAAAAAAAAAAwInPvY8ScLq48lC7NQYHtunAcLujxXo1AACAPwAAgD+zXQE9KdBquqAunbqXrZm1L+GxOo5suDkAAIA/AACAPzMM2rxHOXQ/Zp3HvSE/gr5wDUm9D3xDvAAAAAAAAAAATaQdvSlgOLpr0uO6IB25tSgPprmVAgY6AACAPwAAgD8zr+g84cCQupHgorrXv561b9SIuSbIvDkAAIA/AACAP6a+zL3DaRS62f0ePOF5VTaBqpA5QtdENQAAgD8AAIA/Zh2cPKTBqD9GM/g9g4ifvmnWwTzpBaU9AAAAAAAAAADz6IM9SBGCuvsqCDzBGTOzoG4hO/NyRrMAAIA/AACAP0DEkz32ZEG6GoDQOs8BcTZBNKQ62rDwuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQkC+hAqBZkCUhpRSlIwBbJRN6AOMAXSUR0CTQ4w6ySmqdX2UKGgGaAloD0MIlBKCVfUTXUCUhpRSlGgVTegDaBZHQJNGeHYYixF1fZQoaAZoCWgPQwjsia4LPyA6QJSGlFKUaBVNEAFoFkdAk07TkdV/+nV9lChoBmgJaA9DCKN1VDXBvGBAlIaUUpRoFU3oA2gWR0CTUlhmXgLrdX2UKGgGaAloD0MIZLDiVGtuX0CUhpRSlGgVTegDaBZHQJNWHEJjUd91fZQoaAZoCWgPQwgT8db5tyldQJSGlFKUaBVN6ANoFkdAk1a9wR5C4XV9lChoBmgJaA9DCEuuYvGbV2NAlIaUUpRoFU3oA2gWR0CTV1Z8KG+LdX2UKGgGaAloD0MIWVGDaZgSYECUhpRSlGgVTegDaBZHQJNXs+1SflJ1fZQoaAZoCWgPQwiqtpvgm1xlQJSGlFKUaBVN6ANoFkdAk1mXiFTNuHV9lChoBmgJaA9DCH8zMV2ITVJAlIaUUpRoFUvoaBZHQJNbfLW7OFB1fZQoaAZoCWgPQwgyxofZy8ZhQJSGlFKUaBVN6ANoFkdAk1yd2xIJ7nV9lChoBmgJaA9DCJOMnIX913FAlIaUUpRoFU3gAWgWR0CTXLb212JSdX2UKGgGaAloD0MIuVSlLa65QECUhpRSlGgVTRIBaBZHQJNzeuZCv5h1fZQoaAZoCWgPQwjrxOV4BcNgQJSGlFKUaBVN6ANoFkdAk3XE8A7xNXV9lChoBmgJaA9DCHmxMETO7mVAlIaUUpRoFU3oA2gWR0CTeJtHhCMQdX2UKGgGaAloD0MIV7H4TWGrYUCUhpRSlGgVTegDaBZHQJOBoOZssQN1fZQoaAZoCWgPQwhzEkpfiN1hQJSGlFKUaBVN6ANoFkdAk4tAKa5PM3V9lChoBmgJaA9DCCyeeqRB2GBAlIaUUpRoFU3oA2gWR0CTi9e8f3evdX2UKGgGaAloD0MIkIe+u5XwXECUhpRSlGgVTegDaBZHQJOO3/n4fwJ1fZQoaAZoCWgPQwhqvd9oR7NlQJSGlFKUaBVN6ANoFkdAk5NSy2QXAXV9lChoBmgJaA9DCCcXY2AdMmZAlIaUUpRoFU3oA2gWR0CTpyxzq8lHdX2UKGgGaAloD0MIlfJaCd2yY0CUhpRSlGgVTegDaBZHQJOn8KVpsXV1fZQoaAZoCWgPQwiu8C4XcZJkQJSGlFKUaBVN6ANoFkdAk6ipfICEH3V9lChoBmgJaA9DCEbT2cngdWJAlIaUUpRoFU3oA2gWR0CTqRn/T9bYdX2UKGgGaAloD0MIl5APejYdZkCUhpRSlGgVTegDaBZHQJOrdOIqLCN1fZQoaAZoCWgPQwhwRPesa8VgQJSGlFKUaBVN6ANoFkdAk63jIzWPLnV9lChoBmgJaA9DCEz/klSmS2JAlIaUUpRoFU3oA2gWR0CTr0pjc2zfdX2UKGgGaAloD0MI7dgIxOuSZECUhpRSlGgVTegDaBZHQJOvaTV2A5J1fZQoaAZoCWgPQwhwfO2Zpd5hQJSGlFKUaBVN6ANoFkdAk7Ohd6cAinV9lChoBmgJaA9DCLRYiuQrSl9AlIaUUpRoFU3oA2gWR0CTyLFGoaUBdX2UKGgGaAloD0MIqvOo+L/0ZkCUhpRSlGgVTegDaBZHQJPLsKpkwvh1fZQoaAZoCWgPQwjNzMzMzFZfQJSGlFKUaBVN6ANoFkdAk9W58v24/nV9lChoBmgJaA9DCBE5fT0fBXJAlIaUUpRoFU0CAmgWR0CT2q1KXfIkdX2UKGgGaAloD0MIvVRszGvqY0CUhpRSlGgVTegDaBZHQJPfLGhmGud1fZQoaAZoCWgPQwgm32xz43BiQJSGlFKUaBVN6ANoFkdAk9+oC6pYLnV9lChoBmgJaA9DCNQs0O6Qd2RAlIaUUpRoFU3oA2gWR0CT4iqJuVHGdX2UKGgGaAloD0MI9wZfmEwnZ0CUhpRSlGgVTegDaBZHQJPlshJRO1x1fZQoaAZoCWgPQwgqHhfVov5kQJSGlFKUaBVN6ANoFkdAk/lc1XNkfHV9lChoBmgJaA9DCKKyYU3lSGZAlIaUUpRoFU3oA2gWR0CT+iukDZDidX2UKGgGaAloD0MInnsPl5xTZECUhpRSlGgVTegDaBZHQJP69A2Q4jt1fZQoaAZoCWgPQwgCKhxBqtVkQJSGlFKUaBVN6ANoFkdAk/21DneSCHV9lChoBmgJaA9DCHB9WG9Ug2FAlIaUUpRoFU3oA2gWR0CUAAQuEmICdX2UKGgGaAloD0MIdha9UwFTYECUhpRSlGgVTegDaBZHQJQBQ2pAD7t1fZQoaAZoCWgPQwhn1lJAWnhoQJSGlFKUaBVN6ANoFkdAlAFeS0Sh8XV9lChoBmgJaA9DCPAxWHGqOmRAlIaUUpRoFU3oA2gWR0CUBTncclw+dX2UKGgGaAloD0MIv2GiQQrBW0CUhpRSlGgVTegDaBZHQJQaOeUY8+11fZQoaAZoCWgPQwiEvB5MCmNkQJSGlFKUaBVN6ANoFkdAlBz0z41xbXV9lChoBmgJaA9DCC5XPzZJ5mRAlIaUUpRoFU3oA2gWR0CUJUii7CizdX2UKGgGaAloD0MIJCh+jDnLYkCUhpRSlGgVTegDaBZHQJQpJ08vEjx1fZQoaAZoCWgPQwjBGmfTEaBgQJSGlFKUaBVN6ANoFkdAlCyIYrJ8v3V9lChoBmgJaA9DCOQSRx5IuHFAlIaUUpRoFU0fAmgWR0CULKRiPQv6dX2UKGgGaAloD0MIqbwd4TT9YkCUhpRSlGgVTegDaBZHQJQs4+zMRpV1fZQoaAZoCWgPQwj3jhoTYpFlQJSGlFKUaBVN6ANoFkdAlC7xnanJk3V9lChoBmgJaA9DCP1s5LqpNGVAlIaUUpRoFU3oA2gWR0CUMeKNQ0oCdX2UKGgGaAloD0MIYqJBCp5OR0CUhpRSlGgVTREBaBZHQJQ7uZRbbDd1fZQoaAZoCWgPQwjFrYIY6E5rQJSGlFKUaBVNPwNoFkdAlEBm/ag263V9lChoBmgJaA9DCAVsByN2KmFAlIaUUpRoFU3oA2gWR0CUQtbblA/tdX2UKGgGaAloD0MIiQlq+BbZYUCUhpRSlGgVTegDaBZHQJRDg4T9KmN1fZQoaAZoCWgPQwiXxi+8khhhQJSGlFKUaBVN6ANoFkdAlEQfViF0xXV9lChoBmgJaA9DCNnuHqB7nGVAlIaUUpRoFU3oA2gWR0CUSIoybhFWdX2UKGgGaAloD0MIBMk7h7LgZUCUhpRSlGgVTegDaBZHQJRJ6gg5imV1fZQoaAZoCWgPQwg+y/Pg7n9gQJSGlFKUaBVN6ANoFkdAlE4S1Z1V53V9lChoBmgJaA9DCLwi+N9KFkhAlIaUUpRoFUvqaBZHQJRPSovSMLp1fZQoaAZoCWgPQwjvchHfiYlCQJSGlFKUaBVNKAFoFkdAlFBPmLcbi3V9lChoBmgJaA9DCDNQGf8+HV9AlIaUUpRoFU3oA2gWR0CUUFzFMqSYdX2UKGgGaAloD0MIXg8mxUdZYUCUhpRSlGgVTegDaBZHQJRloRChN/R1fZQoaAZoCWgPQwiPNSODXF9iQJSGlFKUaBVN6ANoFkdAlG1zJp35e3V9lChoBmgJaA9DCE8fgT98XGNAlIaUUpRoFU3oA2gWR0CUcS7q6e5GdX2UKGgGaAloD0MIGhnkLsLabUCUhpRSlGgVTakDaBZHQJRxPWOIZZV1fZQoaAZoCWgPQwiFmbZ/Jd5xQJSGlFKUaBVNxgFoFkdAlHH/T9bX6XV9lChoBmgJaA9DCPg0Jy8yaF9AlIaUUpRoFU3oA2gWR0CUdK4LThHcdX2UKGgGaAloD0MI4ZaPpKS4Z0CUhpRSlGgVTegDaBZHQJR2lfPX05F1fZQoaAZoCWgPQwjdzynIz+xfQJSGlFKUaBVN6ANoFkdAlHlv3ztkWnV9lChoBmgJaA9DCDPBcK5hnm5AlIaUUpRoFU2aAmgWR0CUgic4o7V8dX2UKGgGaAloD0MItABtq1kyZUCUhpRSlGgVTegDaBZHQJSCdtix3V11fZQoaAZoCWgPQwjMXUvIBwtvQJSGlFKUaBVN/wJoFkdAlIMrp3X7L3V9lChoBmgJaA9DCGQ730+NpURAlIaUUpRoFUv7aBZHQJSDfdoFmnR1fZQoaAZoCWgPQwhuv3yy4qNoQJSGlFKUaBVN6ANoFkdAlIhPQv6CUXV9lChoBmgJaA9DCKr0E85u7ltAlIaUUpRoFU3oA2gWR0CUiMthNM4+dX2UKGgGaAloD0MIww5j0t+IXkCUhpRSlGgVTegDaBZHQJSS6ZYxL011fZQoaAZoCWgPQwgttd5vNBNiQJSGlFKUaBVN6ANoFkdAlJP/lp48l3V9lChoBmgJaA9DCNifxOfOBmJAlIaUUpRoFU3oA2gWR0CUlA3H7xd6dX2UKGgGaAloD0MIHEC/7992YECUhpRSlGgVTegDaBZHQJSpZFUhmoR1fZQoaAZoCWgPQwjjNEQV/uFnQJSGlFKUaBVN6ANoFkdAlLGyi/O+qXV9lChoBmgJaA9DCBS0yeGT8k9AlIaUUpRoFU0JAWgWR0CUszIV/MGHdX2UKGgGaAloD0MI662BrZKbY0CUhpRSlGgVTegDaBZHQJS1j9l2/zt1fZQoaAZoCWgPQwjz5QXYx2hmQJSGlFKUaBVN6ANoFkdAlLWeKbayr3V9lChoBmgJaA9DCJXUCWiih2NAlIaUUpRoFU3oA2gWR0CUtmKZDzAfdX2UKGgGaAloD0MIj26ERUVTZ0CUhpRSlGgVTegDaBZHQJS5Gx/ustF1fZQoaAZoCWgPQwg/qIsUyjhjQJSGlFKUaBVN6ANoFkdAlL3fh2nsLXV9lChoBmgJaA9DCPlISnoY3kNAlIaUUpRoFUv7aBZHQJTCOtYB/7V1fZQoaAZoCWgPQwig4GJFDdRkQJSGlFKUaBVN6ANoFkdAlMaSpR4yGnV9lChoBmgJaA9DCGraxTTT5mJAlIaUUpRoFU3oA2gWR0CUxuTr3TNMdX2UKGgGaAloD0MIbjE/NzQmZ0CUhpRSlGgVTegDaBZHQJTHod92HL11fZQoaAZoCWgPQwiMvKyJBRdmQJSGlFKUaBVN6ANoFkdAlMf0mdAgPnV9lChoBmgJaA9DCONV1jbFo2BAlIaUUpRoFU3oA2gWR0CUzMWbwz+FdX2UKGgGaAloD0MIxm8KK5V9aECUhpRSlGgVTegDaBZHQJTNQR15jYt1fZQoaAZoCWgPQwi29Giqp1dkQJSGlFKUaBVN6ANoFkdAlNmQJokAxXV9lChoBmgJaA9DCKH2WzvRamFAlIaUUpRoFU3oA2gWR0CU2aJ8OTaCdX2UKGgGaAloD0MIuMg9XV3PZECUhpRSlGgVTegDaBZHQJTc8S8J2Md1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca80c3ee7997bf26edc0efc31384a81c69f6ca64691123db985e91cc9e126344
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a0d546e84ba22d3d51471d9e2b6774adc36e4e6daddc36583792be560fcfef8
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (214 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.50472492882557, "std_reward": 13.453559568600122, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T02:30:52.360847"}