jannikskytt commited on
Commit
78e799e
·
1 Parent(s): 1fbe0e0

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1216.00 +/- 351.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0f2594693e02d845de4ba68adf255aa2b264accef6500202c85460f0e35eb4d
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f179e299ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f179e299d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f179e299dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f179e299e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f179e299ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f179e299f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f179e29f040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f179e29f0d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f179e29f160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f179e29f1f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f179e29f280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f179e29f310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f179e295ae0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675849275412106433,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAv6jD/E0Ey/eVdJvj3Iuj+8tLc/JbiIv8DERD+fl3w9q22PP9OyVL+2KqU/QO3wPOq7pb8oaww9ZMBtvONHlT4rRqi/6pkvP9LsBL6WuAZAts0OPwtA8791zLc/48gJPyHAGj87LEjAEYYqP6PNkT8SCiY+iMccv7BQFT2Axa0/KHWAP8oS7b/BDfe+EAzaPaYOlz9kTYi/tVeLv8FHzT2X9Uu/fNMgP6VPzz6uN54/xW8qv7lwlT9M9dW8il4jQDtEpz+nk8a/LZefPxLhYz9Ov9O/1bKjPjUpwL++vWC/3uraPs74JL/zzus5gbyKP+nPj749ufA+e5fAPWclh7+R/E29i0jMP7Eknz8I1mk+Q0ZKvqqMtT+qOQQ/k2/mPDtDuL7czZs+bnTlPpshvT5ONZ++7N1IP8V13z1WozG+IcAaP9Wyoz4Rhio/vr1gvxhd9z4wNaK/32qov55zDr+EzcM/22ntv972v76PH7o+Ost3vQvz3L+5Loy/qEjxPPEXxT9uQrq7lUs1vy2M278+n4A/aHQnQJ0pvb9XNG4+iujkP7+tID86zYc/FRgBvk6/0787LEjAEYYqP769YL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD0x3u2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGEcDPgAAAACK+di/AAAAAK9/Dz4AAAAAukX3PwAAAAALdPO9AAAAAIAM8z8AAAAAdvt9PQAAAAD6n/2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8F2KNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIWpmL0AAAAAMgP2vwAAAADjz+49AAAAAMOA7D8AAAAAoLTyPQAAAAAcTOU/AAAAAAAmAz4AAAAATLPlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjKkDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIABj4S9AAAAAIc+6L8AAAAA6iTPuwAAAAD2dP4/AAAAAA3TCD4AAAAA3onmPwAAAABwwgo+AAAAAJwW9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGzZg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAW0alvQAAAAD49u2/AAAAANAeG7wAAAAA90/4PwAAAAAxvd49AAAAAOvnAEAAAAAAYqKpvAAAAACd8f6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIljPhhpg1GMAWyUTegDjAF0lEdArEhRDLKV6nV9lChoBkdAlwTe6NEPUmgHTegDaAhHQKxIa2E0zj51fZQoaAZHQJdkiVpsXSBoB03oA2gIR0CsTboxpL26dX2UKGgGR0CYSyT4cm0FaAdN6ANoCEdArE3zUd7v5XV9lChoBkdAl0SvCl7+k2gHTegDaAhHQKxUkvXbudB1fZQoaAZHQJheHb0voNdoB03oA2gIR0CsVLNpEhJRdX2UKGgGR0CUN8kJa7mMaAdN6ANoCEdArF0LFERao3V9lChoBkdAl2qsJlar3mgHTegDaAhHQKxdaBqbjLl1fZQoaAZHQJcCiwt8NQVoB03oA2gIR0CsZN33xnWbdX2UKGgGR0CR8o/QSi/PaAdN6ANoCEdArGT6wMYuTXV9lChoBkdAmENA1ejVQWgHTegDaAhHQKxqHGtITXd1fZQoaAZHQJbRl+9alk9oB03oA2gIR0CsalUQbuMNdX2UKGgGR0CUPtdLQHAzaAdN6ANoCEdArHD/aBZpz3V9lChoBkdAlp0ogNgBtGgHTegDaAhHQKxxG8tf5UN1fZQoaAZHQJFRa75Ec81oB03oA2gIR0CseBZOSGJvdX2UKGgGR0CPZofUWl/IaAdN6ANoCEdArHhvsLORknV9lChoBkdAkn9BMzuWr2gHTegDaAhHQKyBmVE/jbV1fZQoaAZHQJS7Q4wRGtpoB03oA2gIR0CsgbU78vVWdX2UKGgGR0CRr73os7MgaAdN6ANoCEdArIb+gBcRlHV9lChoBkdAkVinx4IKMWgHTegDaAhHQKyHNkiliz91fZQoaAZHQJNadbyH2ytoB03oA2gIR0CsjefbblBAdX2UKGgGR0CQ66MRYigTaAdN6ANoCEdArI4AyO7xu3V9lChoBkdAkoVMNMGorGgHTegDaAhHQKyThRuTA311fZQoaAZHQJAyLeHi3odoB03oA2gIR0Csk9oWxhUjdX2UKGgGR0CSTuuE25xzaAdN6ANoCEdArJ46yprDZXV9lChoBkdAlevJEYwZfmgHTegDaAhHQKyeWdWhh6V1fZQoaAZHQJVcfebd8AtoB03oA2gIR0Cso56g2606dX2UKGgGR0CTD2FR51NhaAdN6ANoCEdArKPXS8an8HV9lChoBkdAlAfMVtXPq2gHTegDaAhHQKyqSG5c1O11fZQoaAZHQJPN7C/GlyloB03oA2gIR0CsqmGukk8idX2UKGgGR0CWnjNWU8msaAdN6ANoCEdArK/s5jpcHHV9lChoBkdAk8XJD7ZWaWgHTegDaAhHQKywJPuXu3N1fZQoaAZHQJZSTa9K28ZoB03oA2gIR0CsuafCAMDwdX2UKGgGR0CT7mRNh3JQaAdN6ANoCEdArLnQkJKJ23V9lChoBkdAlJtlsP8Q7WgHTegDaAhHQKzARhXr+o91fZQoaAZHQJTDBOvdM0xoB03oA2gIR0CswICFCb+cdX2UKGgGR0CVBL8wHqu9aAdN6ANoCEdArMc6zHCGe3V9lChoBkdAlTSBaHKwIWgHTegDaAhHQKzHVh2nsLR1fZQoaAZHQJHa6bF0gbJoB03oA2gIR0CszLitq59WdX2UKGgGR0CQljdf9gndaAdN6ANoCEdArMzz48EFGHV9lChoBkdAkLENhZyMk2gHTegDaAhHQKzVNIzWPLh1fZQoaAZHQJGdTFS88LdoB03oA2gIR0Cs1Vs7MgU2dX2UKGgGR0CRlA2FWXC1aAdN6ANoCEdArN0g0/GEPHV9lChoBkdAlR9teUpuuWgHTegDaAhHQKzdWCDmKZV1fZQoaAZHQJNXhJiAlOZoB03oA2gIR0Cs4/ZJsfq5dX2UKGgGR0CR4FE7nxJ/aAdN6ANoCEdArOQPdRBNVXV9lChoBkdAk2gaBun/DWgHTegDaAhHQKzphOIInjR1fZQoaAZHQIi0S8rZrYZoB03oA2gIR0Cs6cLNOdoWdX2UKGgGR0CUK6TCcf/4aAdN6ANoCEdArPDZ8Sf16HV9lChoBkdAk8/RN/OMVGgHTegDaAhHQKzw/aA4GUx1fZQoaAZHQJQjcQDmr81oB03oA2gIR0Cs+UJTl1bJdX2UKGgGR0CSPQDE3sHCaAdN6ANoCEdArPmftBv733V9lChoBkdAkvspCv5gxGgHTegDaAhHQK0Ak5myxA11fZQoaAZHQJBY/XYlIEtoB03oA2gIR0CtAKujynUEdX2UKGgGR0CIKHCgK4QSaAdN6ANoCEdArQXtPnB+F3V9lChoBkdAkMhHT7VJ+WgHTegDaAhHQK0GJWBjFyd1fZQoaAZHQJMgld1MdtFoB03oA2gIR0CtDL8XenAJdX2UKGgGR0CTbOLCemNzaAdN6ANoCEdArQzXgUDdQHV9lChoBkdAk+Rqyv9tM2gHTegDaAhHQK0UDGx2SuB1fZQoaAZHQJTHrvLHMlloB03oA2gIR0CtFGuscQyzdX2UKGgGR0CSMpScslLOaAdN6ANoCEdArR0vQD3dsXV9lChoBkdAlK5WiL2pQ2gHTegDaAhHQK0dSBikO7R1fZQoaAZHQJQWqreZXuFoB03oA2gIR0CtIpOpS75EdX2UKGgGR0CS5gY4yXUpaAdN6ANoCEdArSLOKKpDNXV9lChoBkdAhZNgTRIBimgHTegDaAhHQK0pgy2x6fJ1fZQoaAZHQJNI7eYUnG9oB03oA2gIR0CtKZwVsUItdX2UKGgGR0CSvfSiM5wPaAdN6ANoCEdArS+AHqu8snV9lChoBkdAlDpqdpZfUmgHTegDaAhHQK0v2WbgCOp1fZQoaAZHQIAsCpDNQj5oB03oA2gIR0CtOgGIKtxNdX2UKGgGR0CIUXKbKA8TaAdN6ANoCEdArTocg8r7O3V9lChoBkdAiKPlFDv3J2gHTegDaAhHQK0/idbxEv11fZQoaAZHQJIsw//vOQhoB03oA2gIR0CtP8yH/LkkdX2UKGgGR0CRA0dxQzk7aAdN6ANoCEdArUZpisny/nV9lChoBkdAi/dyUs4DLmgHTegDaAhHQK1GgKQaJhx1fZQoaAZHQI4636Mzdk9oB03oA2gIR0CtS7KpLmITdX2UKGgGR0CMM7QhwEQoaAdN6ANoCEdArUvqKJl8PXV9lChoBkdAkE+uqebut2gHTegDaAhHQK1Vss2eg+R1fZQoaAZHQI/35HI6r/9oB03oA2gIR0CtVdwvQF9sdX2UKGgGR0CTBYfCQ9zPaAdN6ANoCEdArVv0G7jDK3V9lChoBkdAkDa3fZVXFWgHTegDaAhHQK1cLJQtSQ51fZQoaAZHQH1Kj5Kvmo1oB03oAWgIR0CtYk1rRBu5dX2UKGgGR0CSxnCOFQEZaAdN6ANoCEdArWL0yFfzBnV9lChoBkdAkvxsAR02cmgHTegDaAhHQK1jDdcB2fV1fZQoaAZHQJHaQhs67uloB03oA2gIR0CtaG1vES/TdX2UKGgGR0CLY9Go73fyaAdN6ANoCEdArXASF49ovnV9lChoBkdAlWJXe3x4IWgHTegDaAhHQK1xGfQKKHh1fZQoaAZHQI6ypl+Vkc1oB03oA2gIR0CtcUHvc8DCdX2UKGgGR0CGbn5s0pEyaAdN6ANoCEdArXjFkz41xnV9lChoBkdAj27FzuF6A2gHTegDaAhHQK1/BRjSXt11fZQoaAZHQJAa48nuy/toB03oA2gIR0Ctf6tBOYY0dX2UKGgGR0CFxBHVf/m1aAdN6ANoCEdArX/EnTiKi3V9lChoBkdAj7/LGza9K2gHTegDaAhHQK2FJbA1vVF1fZQoaAZHQJQsgsMAmzBoB03oA2gIR0Cti2e7L+xXdX2UKGgGR0CPsBjR2KVIaAdN6ANoCEdArYxijzqbB3V9lChoBkdAjbhnCwbEP2gHTegDaAhHQK2MiHxBmf51fZQoaAZHQI3Lv7xd6cBoB03oA2gIR0CtlLt/OMVDdX2UKGgGR0CUwk5wfhddaAdN6ANoCEdArZtWL3sXznV9lChoBkdAlO1G34Kx92gHTegDaAhHQK2cAfOlfqp1fZQoaAZHQJGtoTBZZB9oB03oA2gIR0CtnBqyfL9udX2UKGgGR0CPePIUahpQaAdN6ANoCEdAraFrK3d9D3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:252b71e71345cc1c71e7cacdf856706e84204f5ffdb2ad02ffc08d94ab9d3607
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56b9dc67f32448b1062d78133a2dbbd3e5c857afb655a8a5d40a3c48d391cb27
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f179e299ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f179e299d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f179e299dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f179e299e50>", "_build": "<function ActorCriticPolicy._build at 0x7f179e299ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f179e299f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f179e29f040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f179e29f0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f179e29f160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f179e29f1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f179e29f280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f179e29f310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f179e295ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675849275412106433, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAv6jD/E0Ey/eVdJvj3Iuj+8tLc/JbiIv8DERD+fl3w9q22PP9OyVL+2KqU/QO3wPOq7pb8oaww9ZMBtvONHlT4rRqi/6pkvP9LsBL6WuAZAts0OPwtA8791zLc/48gJPyHAGj87LEjAEYYqP6PNkT8SCiY+iMccv7BQFT2Axa0/KHWAP8oS7b/BDfe+EAzaPaYOlz9kTYi/tVeLv8FHzT2X9Uu/fNMgP6VPzz6uN54/xW8qv7lwlT9M9dW8il4jQDtEpz+nk8a/LZefPxLhYz9Ov9O/1bKjPjUpwL++vWC/3uraPs74JL/zzus5gbyKP+nPj749ufA+e5fAPWclh7+R/E29i0jMP7Eknz8I1mk+Q0ZKvqqMtT+qOQQ/k2/mPDtDuL7czZs+bnTlPpshvT5ONZ++7N1IP8V13z1WozG+IcAaP9Wyoz4Rhio/vr1gvxhd9z4wNaK/32qov55zDr+EzcM/22ntv972v76PH7o+Ost3vQvz3L+5Loy/qEjxPPEXxT9uQrq7lUs1vy2M278+n4A/aHQnQJ0pvb9XNG4+iujkP7+tID86zYc/FRgBvk6/0787LEjAEYYqP769YL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD0x3u2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGEcDPgAAAACK+di/AAAAAK9/Dz4AAAAAukX3PwAAAAALdPO9AAAAAIAM8z8AAAAAdvt9PQAAAAD6n/2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8F2KNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIWpmL0AAAAAMgP2vwAAAADjz+49AAAAAMOA7D8AAAAAoLTyPQAAAAAcTOU/AAAAAAAmAz4AAAAATLPlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjKkDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIABj4S9AAAAAIc+6L8AAAAA6iTPuwAAAAD2dP4/AAAAAA3TCD4AAAAA3onmPwAAAABwwgo+AAAAAJwW9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGzZg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAW0alvQAAAAD49u2/AAAAANAeG7wAAAAA90/4PwAAAAAxvd49AAAAAOvnAEAAAAAAYqKpvAAAAACd8f6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIljPhhpg1GMAWyUTegDjAF0lEdArEhRDLKV6nV9lChoBkdAlwTe6NEPUmgHTegDaAhHQKxIa2E0zj51fZQoaAZHQJdkiVpsXSBoB03oA2gIR0CsTboxpL26dX2UKGgGR0CYSyT4cm0FaAdN6ANoCEdArE3zUd7v5XV9lChoBkdAl0SvCl7+k2gHTegDaAhHQKxUkvXbudB1fZQoaAZHQJheHb0voNdoB03oA2gIR0CsVLNpEhJRdX2UKGgGR0CUN8kJa7mMaAdN6ANoCEdArF0LFERao3V9lChoBkdAl2qsJlar3mgHTegDaAhHQKxdaBqbjLl1fZQoaAZHQJcCiwt8NQVoB03oA2gIR0CsZN33xnWbdX2UKGgGR0CR8o/QSi/PaAdN6ANoCEdArGT6wMYuTXV9lChoBkdAmENA1ejVQWgHTegDaAhHQKxqHGtITXd1fZQoaAZHQJbRl+9alk9oB03oA2gIR0CsalUQbuMNdX2UKGgGR0CUPtdLQHAzaAdN6ANoCEdArHD/aBZpz3V9lChoBkdAlp0ogNgBtGgHTegDaAhHQKxxG8tf5UN1fZQoaAZHQJFRa75Ec81oB03oA2gIR0CseBZOSGJvdX2UKGgGR0CPZofUWl/IaAdN6ANoCEdArHhvsLORknV9lChoBkdAkn9BMzuWr2gHTegDaAhHQKyBmVE/jbV1fZQoaAZHQJS7Q4wRGtpoB03oA2gIR0CsgbU78vVWdX2UKGgGR0CRr73os7MgaAdN6ANoCEdArIb+gBcRlHV9lChoBkdAkVinx4IKMWgHTegDaAhHQKyHNkiliz91fZQoaAZHQJNadbyH2ytoB03oA2gIR0CsjefbblBAdX2UKGgGR0CQ66MRYigTaAdN6ANoCEdArI4AyO7xu3V9lChoBkdAkoVMNMGorGgHTegDaAhHQKyThRuTA311fZQoaAZHQJAyLeHi3odoB03oA2gIR0Csk9oWxhUjdX2UKGgGR0CSTuuE25xzaAdN6ANoCEdArJ46yprDZXV9lChoBkdAlevJEYwZfmgHTegDaAhHQKyeWdWhh6V1fZQoaAZHQJVcfebd8AtoB03oA2gIR0Cso56g2606dX2UKGgGR0CTD2FR51NhaAdN6ANoCEdArKPXS8an8HV9lChoBkdAlAfMVtXPq2gHTegDaAhHQKyqSG5c1O11fZQoaAZHQJPN7C/GlyloB03oA2gIR0CsqmGukk8idX2UKGgGR0CWnjNWU8msaAdN6ANoCEdArK/s5jpcHHV9lChoBkdAk8XJD7ZWaWgHTegDaAhHQKywJPuXu3N1fZQoaAZHQJZSTa9K28ZoB03oA2gIR0CsuafCAMDwdX2UKGgGR0CT7mRNh3JQaAdN6ANoCEdArLnQkJKJ23V9lChoBkdAlJtlsP8Q7WgHTegDaAhHQKzARhXr+o91fZQoaAZHQJTDBOvdM0xoB03oA2gIR0CswICFCb+cdX2UKGgGR0CVBL8wHqu9aAdN6ANoCEdArMc6zHCGe3V9lChoBkdAlTSBaHKwIWgHTegDaAhHQKzHVh2nsLR1fZQoaAZHQJHa6bF0gbJoB03oA2gIR0CszLitq59WdX2UKGgGR0CQljdf9gndaAdN6ANoCEdArMzz48EFGHV9lChoBkdAkLENhZyMk2gHTegDaAhHQKzVNIzWPLh1fZQoaAZHQJGdTFS88LdoB03oA2gIR0Cs1Vs7MgU2dX2UKGgGR0CRlA2FWXC1aAdN6ANoCEdArN0g0/GEPHV9lChoBkdAlR9teUpuuWgHTegDaAhHQKzdWCDmKZV1fZQoaAZHQJNXhJiAlOZoB03oA2gIR0Cs4/ZJsfq5dX2UKGgGR0CR4FE7nxJ/aAdN6ANoCEdArOQPdRBNVXV9lChoBkdAk2gaBun/DWgHTegDaAhHQKzphOIInjR1fZQoaAZHQIi0S8rZrYZoB03oA2gIR0Cs6cLNOdoWdX2UKGgGR0CUK6TCcf/4aAdN6ANoCEdArPDZ8Sf16HV9lChoBkdAk8/RN/OMVGgHTegDaAhHQKzw/aA4GUx1fZQoaAZHQJQjcQDmr81oB03oA2gIR0Cs+UJTl1bJdX2UKGgGR0CSPQDE3sHCaAdN6ANoCEdArPmftBv733V9lChoBkdAkvspCv5gxGgHTegDaAhHQK0Ak5myxA11fZQoaAZHQJBY/XYlIEtoB03oA2gIR0CtAKujynUEdX2UKGgGR0CIKHCgK4QSaAdN6ANoCEdArQXtPnB+F3V9lChoBkdAkMhHT7VJ+WgHTegDaAhHQK0GJWBjFyd1fZQoaAZHQJMgld1MdtFoB03oA2gIR0CtDL8XenAJdX2UKGgGR0CTbOLCemNzaAdN6ANoCEdArQzXgUDdQHV9lChoBkdAk+Rqyv9tM2gHTegDaAhHQK0UDGx2SuB1fZQoaAZHQJTHrvLHMlloB03oA2gIR0CtFGuscQyzdX2UKGgGR0CSMpScslLOaAdN6ANoCEdArR0vQD3dsXV9lChoBkdAlK5WiL2pQ2gHTegDaAhHQK0dSBikO7R1fZQoaAZHQJQWqreZXuFoB03oA2gIR0CtIpOpS75EdX2UKGgGR0CS5gY4yXUpaAdN6ANoCEdArSLOKKpDNXV9lChoBkdAhZNgTRIBimgHTegDaAhHQK0pgy2x6fJ1fZQoaAZHQJNI7eYUnG9oB03oA2gIR0CtKZwVsUItdX2UKGgGR0CSvfSiM5wPaAdN6ANoCEdArS+AHqu8snV9lChoBkdAlDpqdpZfUmgHTegDaAhHQK0v2WbgCOp1fZQoaAZHQIAsCpDNQj5oB03oA2gIR0CtOgGIKtxNdX2UKGgGR0CIUXKbKA8TaAdN6ANoCEdArTocg8r7O3V9lChoBkdAiKPlFDv3J2gHTegDaAhHQK0/idbxEv11fZQoaAZHQJIsw//vOQhoB03oA2gIR0CtP8yH/LkkdX2UKGgGR0CRA0dxQzk7aAdN6ANoCEdArUZpisny/nV9lChoBkdAi/dyUs4DLmgHTegDaAhHQK1GgKQaJhx1fZQoaAZHQI4636Mzdk9oB03oA2gIR0CtS7KpLmITdX2UKGgGR0CMM7QhwEQoaAdN6ANoCEdArUvqKJl8PXV9lChoBkdAkE+uqebut2gHTegDaAhHQK1Vss2eg+R1fZQoaAZHQI/35HI6r/9oB03oA2gIR0CtVdwvQF9sdX2UKGgGR0CTBYfCQ9zPaAdN6ANoCEdArVv0G7jDK3V9lChoBkdAkDa3fZVXFWgHTegDaAhHQK1cLJQtSQ51fZQoaAZHQH1Kj5Kvmo1oB03oAWgIR0CtYk1rRBu5dX2UKGgGR0CSxnCOFQEZaAdN6ANoCEdArWL0yFfzBnV9lChoBkdAkvxsAR02cmgHTegDaAhHQK1jDdcB2fV1fZQoaAZHQJHaQhs67uloB03oA2gIR0CtaG1vES/TdX2UKGgGR0CLY9Go73fyaAdN6ANoCEdArXASF49ovnV9lChoBkdAlWJXe3x4IWgHTegDaAhHQK1xGfQKKHh1fZQoaAZHQI6ypl+Vkc1oB03oA2gIR0CtcUHvc8DCdX2UKGgGR0CGbn5s0pEyaAdN6ANoCEdArXjFkz41xnV9lChoBkdAj27FzuF6A2gHTegDaAhHQK1/BRjSXt11fZQoaAZHQJAa48nuy/toB03oA2gIR0Ctf6tBOYY0dX2UKGgGR0CFxBHVf/m1aAdN6ANoCEdArX/EnTiKi3V9lChoBkdAj7/LGza9K2gHTegDaAhHQK2FJbA1vVF1fZQoaAZHQJQsgsMAmzBoB03oA2gIR0Cti2e7L+xXdX2UKGgGR0CPsBjR2KVIaAdN6ANoCEdArYxijzqbB3V9lChoBkdAjbhnCwbEP2gHTegDaAhHQK2MiHxBmf51fZQoaAZHQI3Lv7xd6cBoB03oA2gIR0CtlLt/OMVDdX2UKGgGR0CUwk5wfhddaAdN6ANoCEdArZtWL3sXznV9lChoBkdAlO1G34Kx92gHTegDaAhHQK2cAfOlfqp1fZQoaAZHQJGtoTBZZB9oB03oA2gIR0CtnBqyfL9udX2UKGgGR0CPePIUahpQaAdN6ANoCEdAraFrK3d9D3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90914d9f5b79a8961a8d9183fcb9f0743bb4e3d6fb386d141e88d69b27319fbc
3
+ size 1185264
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1215.9997844458674, "std_reward": 351.7706423061634, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T11:05:21.539473"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6b091aacf8ed04879cbf910ee09c0c1c2414b2939cf71a35dcaa471954a0fe8
3
+ size 2136