janmariakowalski
commited on
Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +424 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-small-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: W elementach regału brakuje kilku otworów montażowych, uniemożliwiających
|
14 |
+
prawidłowe złożenie.
|
15 |
+
- text: Półki regału Biblioteka są zbyt wąskie.
|
16 |
+
- text: Łóżko drewniane posiada wadę konstrukcji.
|
17 |
+
- text: Noga krzesła drewnianego Country jest złamana.
|
18 |
+
- text: Konstrukcja łóżka piętrowego jest wadliwa, elementy nie pasują do siebie.
|
19 |
+
inference: true
|
20 |
+
model-index:
|
21 |
+
- name: SetFit with BAAI/bge-small-en-v1.5
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: text-classification
|
25 |
+
name: Text Classification
|
26 |
+
dataset:
|
27 |
+
name: Unknown
|
28 |
+
type: unknown
|
29 |
+
split: test
|
30 |
+
metrics:
|
31 |
+
- type: accuracy
|
32 |
+
value: 0.7606837606837606
|
33 |
+
name: Accuracy
|
34 |
+
---
|
35 |
+
|
36 |
+
# SetFit with BAAI/bge-small-en-v1.5
|
37 |
+
|
38 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
39 |
+
|
40 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
41 |
+
|
42 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
43 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
44 |
+
|
45 |
+
## Model Details
|
46 |
+
|
47 |
+
### Model Description
|
48 |
+
- **Model Type:** SetFit
|
49 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
50 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
51 |
+
- **Maximum Sequence Length:** 512 tokens
|
52 |
+
- **Number of Classes:** 4 classes
|
53 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
54 |
+
<!-- - **Language:** Unknown -->
|
55 |
+
<!-- - **License:** Unknown -->
|
56 |
+
|
57 |
+
### Model Sources
|
58 |
+
|
59 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
60 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
61 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
+
|
63 |
+
### Model Labels
|
64 |
+
| Label | Examples |
|
65 |
+
|:---------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
66 |
+
| uszkodzenia | <ul><li>'Drzwiczki szafki na buty Shoe są uszkodzone.'</li><li>'Elementy zestawu mebli ogrodowych Relax są zardzewiałe.'</li><li>'Śruby w stoliku kawowym Loft są obluzowane.'</li></ul> |
|
67 |
+
| błędny montaż | <ul><li>'Szuflady komody wąskiej są zamontowane krzywo i się zacinają.'</li><li>'Drążek na ubrania w szafie jest źle zamontowany i może się wypaść.'</li><li>'Prowadnice szafy przesuwnej są źle zamontowane, przez co drzwi nie przesuwają się płynnie.'</li></ul> |
|
68 |
+
| wady fabryczne | <ul><li>'Brakuje elementów w komodzie Wygodny.'</li><li>'Brakuje drzwiczek w szafie Współczesny.'</li><li>'Tapicerka krzesła jest rozdarcia.'</li></ul> |
|
69 |
+
| niezgodność towaru z zamówieniem | <ul><li>'Kolor stołu dębowego Olbrzym jest inny niż ten, który został zamówiony.'</li><li>'Kolor fotela skórzanego Leather jest inny niż ten, który został zamówiony.'</li><li>'Wysokość biurka białego White jest niższa niż ta, która była w zamówieniu.'</li></ul> |
|
70 |
+
|
71 |
+
## Evaluation
|
72 |
+
|
73 |
+
### Metrics
|
74 |
+
| Label | Accuracy |
|
75 |
+
|:--------|:---------|
|
76 |
+
| **all** | 0.7607 |
|
77 |
+
|
78 |
+
## Uses
|
79 |
+
|
80 |
+
### Direct Use for Inference
|
81 |
+
|
82 |
+
First install the SetFit library:
|
83 |
+
|
84 |
+
```bash
|
85 |
+
pip install setfit
|
86 |
+
```
|
87 |
+
|
88 |
+
Then you can load this model and run inference.
|
89 |
+
|
90 |
+
```python
|
91 |
+
from setfit import SetFitModel
|
92 |
+
|
93 |
+
# Download from the 🤗 Hub
|
94 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
95 |
+
# Run inference
|
96 |
+
preds = model("Półki regału Biblioteka są zbyt wąskie.")
|
97 |
+
```
|
98 |
+
|
99 |
+
<!--
|
100 |
+
### Downstream Use
|
101 |
+
|
102 |
+
*List how someone could finetune this model on their own dataset.*
|
103 |
+
-->
|
104 |
+
|
105 |
+
<!--
|
106 |
+
### Out-of-Scope Use
|
107 |
+
|
108 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
109 |
+
-->
|
110 |
+
|
111 |
+
<!--
|
112 |
+
## Bias, Risks and Limitations
|
113 |
+
|
114 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
115 |
+
-->
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Recommendations
|
119 |
+
|
120 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
## Training Details
|
124 |
+
|
125 |
+
### Training Set Metrics
|
126 |
+
| Training set | Min | Median | Max |
|
127 |
+
|:-------------|:----|:--------|:----|
|
128 |
+
| Word count | 4 | 10.1875 | 39 |
|
129 |
+
|
130 |
+
| Label | Training Sample Count |
|
131 |
+
|:---------------------------------|:----------------------|
|
132 |
+
| uszkodzenia | 24 |
|
133 |
+
| wady fabryczne | 24 |
|
134 |
+
| niezgodność towaru z zamówieniem | 24 |
|
135 |
+
| błędny montaż | 24 |
|
136 |
+
|
137 |
+
### Training Hyperparameters
|
138 |
+
- batch_size: (32, 32)
|
139 |
+
- num_epochs: (10, 10)
|
140 |
+
- max_steps: -1
|
141 |
+
- sampling_strategy: oversampling
|
142 |
+
- body_learning_rate: (2e-05, 1e-05)
|
143 |
+
- head_learning_rate: 0.01
|
144 |
+
- loss: CosineSimilarityLoss
|
145 |
+
- distance_metric: cosine_distance
|
146 |
+
- margin: 0.25
|
147 |
+
- end_to_end: False
|
148 |
+
- use_amp: False
|
149 |
+
- warmup_proportion: 0.1
|
150 |
+
- l2_weight: 0.01
|
151 |
+
- seed: 42
|
152 |
+
- eval_max_steps: -1
|
153 |
+
- load_best_model_at_end: False
|
154 |
+
|
155 |
+
### Training Results
|
156 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
157 |
+
|:------:|:----:|:-------------:|:---------------:|
|
158 |
+
| 0.0104 | 1 | 0.1965 | - |
|
159 |
+
| 0.1042 | 10 | 0.2713 | - |
|
160 |
+
| 0.2083 | 20 | 0.2394 | - |
|
161 |
+
| 0.3125 | 30 | 0.2249 | - |
|
162 |
+
| 0.4167 | 40 | 0.2265 | - |
|
163 |
+
| 0.5208 | 50 | 0.2153 | - |
|
164 |
+
| 0.625 | 60 | 0.2043 | - |
|
165 |
+
| 0.7292 | 70 | 0.2033 | - |
|
166 |
+
| 0.8333 | 80 | 0.204 | - |
|
167 |
+
| 0.9375 | 90 | 0.1648 | - |
|
168 |
+
| 1.0417 | 100 | 0.1452 | - |
|
169 |
+
| 1.1458 | 110 | 0.1219 | - |
|
170 |
+
| 1.25 | 120 | 0.1062 | - |
|
171 |
+
| 1.3542 | 130 | 0.0921 | - |
|
172 |
+
| 1.4583 | 140 | 0.0803 | - |
|
173 |
+
| 1.5625 | 150 | 0.0559 | - |
|
174 |
+
| 1.6667 | 160 | 0.0339 | - |
|
175 |
+
| 1.7708 | 170 | 0.0258 | - |
|
176 |
+
| 1.875 | 180 | 0.0153 | - |
|
177 |
+
| 1.9792 | 190 | 0.0095 | - |
|
178 |
+
| 2.0833 | 200 | 0.0074 | - |
|
179 |
+
| 2.1875 | 210 | 0.0076 | - |
|
180 |
+
| 2.2917 | 220 | 0.0058 | - |
|
181 |
+
| 2.3958 | 230 | 0.005 | - |
|
182 |
+
| 2.5 | 240 | 0.0047 | - |
|
183 |
+
| 2.6042 | 250 | 0.0043 | - |
|
184 |
+
| 2.7083 | 260 | 0.0041 | - |
|
185 |
+
| 2.8125 | 270 | 0.0038 | - |
|
186 |
+
| 2.9167 | 280 | 0.0035 | - |
|
187 |
+
| 3.0208 | 290 | 0.0034 | - |
|
188 |
+
| 3.125 | 300 | 0.0033 | - |
|
189 |
+
| 3.2292 | 310 | 0.0035 | - |
|
190 |
+
| 3.3333 | 320 | 0.0028 | - |
|
191 |
+
| 3.4375 | 330 | 0.0031 | - |
|
192 |
+
| 3.5417 | 340 | 0.0028 | - |
|
193 |
+
| 3.6458 | 350 | 0.0027 | - |
|
194 |
+
| 3.75 | 360 | 0.0025 | - |
|
195 |
+
| 3.8542 | 370 | 0.0025 | - |
|
196 |
+
| 3.9583 | 380 | 0.0024 | - |
|
197 |
+
| 4.0625 | 390 | 0.0023 | - |
|
198 |
+
| 4.1667 | 400 | 0.0023 | - |
|
199 |
+
| 4.2708 | 410 | 0.0022 | - |
|
200 |
+
| 4.375 | 420 | 0.0021 | - |
|
201 |
+
| 4.4792 | 430 | 0.0022 | - |
|
202 |
+
| 4.5833 | 440 | 0.002 | - |
|
203 |
+
| 4.6875 | 450 | 0.0022 | - |
|
204 |
+
| 4.7917 | 460 | 0.0019 | - |
|
205 |
+
| 4.8958 | 470 | 0.0021 | - |
|
206 |
+
| 5.0 | 480 | 0.0018 | - |
|
207 |
+
| 5.1042 | 490 | 0.002 | - |
|
208 |
+
| 5.2083 | 500 | 0.002 | - |
|
209 |
+
| 5.3125 | 510 | 0.0017 | - |
|
210 |
+
| 5.4167 | 520 | 0.002 | - |
|
211 |
+
| 5.5208 | 530 | 0.0017 | - |
|
212 |
+
| 5.625 | 540 | 0.0018 | - |
|
213 |
+
| 5.7292 | 550 | 0.0016 | - |
|
214 |
+
| 5.8333 | 560 | 0.0016 | - |
|
215 |
+
| 5.9375 | 570 | 0.0015 | - |
|
216 |
+
| 6.0417 | 580 | 0.0014 | - |
|
217 |
+
| 6.1458 | 590 | 0.0017 | - |
|
218 |
+
| 6.25 | 600 | 0.0016 | - |
|
219 |
+
| 6.3542 | 610 | 0.0017 | - |
|
220 |
+
| 6.4583 | 620 | 0.0016 | - |
|
221 |
+
| 6.5625 | 630 | 0.0017 | - |
|
222 |
+
| 6.6667 | 640 | 0.0014 | - |
|
223 |
+
| 6.7708 | 650 | 0.0014 | - |
|
224 |
+
| 6.875 | 660 | 0.0016 | - |
|
225 |
+
| 6.9792 | 670 | 0.0015 | - |
|
226 |
+
| 7.0833 | 680 | 0.0015 | - |
|
227 |
+
| 7.1875 | 690 | 0.0014 | - |
|
228 |
+
| 7.2917 | 700 | 0.0015 | - |
|
229 |
+
| 7.3958 | 710 | 0.0014 | - |
|
230 |
+
| 7.5 | 720 | 0.0015 | - |
|
231 |
+
| 7.6042 | 730 | 0.0014 | - |
|
232 |
+
| 7.7083 | 740 | 0.0014 | - |
|
233 |
+
| 7.8125 | 750 | 0.0014 | - |
|
234 |
+
| 7.9167 | 760 | 0.0015 | - |
|
235 |
+
| 8.0208 | 770 | 0.0013 | - |
|
236 |
+
| 8.125 | 780 | 0.0014 | - |
|
237 |
+
| 8.2292 | 790 | 0.0014 | - |
|
238 |
+
| 8.3333 | 800 | 0.0014 | - |
|
239 |
+
| 8.4375 | 810 | 0.0014 | - |
|
240 |
+
| 8.5417 | 820 | 0.0014 | - |
|
241 |
+
| 8.6458 | 830 | 0.0014 | - |
|
242 |
+
| 8.75 | 840 | 0.0013 | - |
|
243 |
+
| 8.8542 | 850 | 0.0013 | - |
|
244 |
+
| 8.9583 | 860 | 0.0013 | - |
|
245 |
+
| 9.0625 | 870 | 0.0013 | - |
|
246 |
+
| 9.1667 | 880 | 0.0014 | - |
|
247 |
+
| 9.2708 | 890 | 0.0013 | - |
|
248 |
+
| 9.375 | 900 | 0.0012 | - |
|
249 |
+
| 9.4792 | 910 | 0.0013 | - |
|
250 |
+
| 9.5833 | 920 | 0.0012 | - |
|
251 |
+
| 9.6875 | 930 | 0.0013 | - |
|
252 |
+
| 9.7917 | 940 | 0.0013 | - |
|
253 |
+
| 9.8958 | 950 | 0.0013 | - |
|
254 |
+
| 10.0 | 960 | 0.0014 | - |
|
255 |
+
| 0.0008 | 1 | 0.2276 | - |
|
256 |
+
| 0.0083 | 10 | 0.2361 | - |
|
257 |
+
| 0.0167 | 20 | 0.1815 | - |
|
258 |
+
| 0.0250 | 30 | 0.2036 | - |
|
259 |
+
| 0.0333 | 40 | 0.1783 | - |
|
260 |
+
| 0.0416 | 50 | 0.1486 | - |
|
261 |
+
| 0.0500 | 60 | 0.191 | - |
|
262 |
+
| 0.0583 | 70 | 0.1741 | - |
|
263 |
+
| 0.0104 | 1 | 0.0021 | - |
|
264 |
+
| 0.1042 | 10 | 0.002 | - |
|
265 |
+
| 0.2083 | 20 | 0.0015 | - |
|
266 |
+
| 0.3125 | 30 | 0.0015 | - |
|
267 |
+
| 0.4167 | 40 | 0.0013 | - |
|
268 |
+
| 0.5208 | 50 | 0.0013 | - |
|
269 |
+
| 0.625 | 60 | 0.0012 | - |
|
270 |
+
| 0.7292 | 70 | 0.0011 | - |
|
271 |
+
| 0.8333 | 80 | 0.0012 | - |
|
272 |
+
| 0.9375 | 90 | 0.0011 | - |
|
273 |
+
| 1.0417 | 100 | 0.001 | - |
|
274 |
+
| 1.1458 | 110 | 0.001 | - |
|
275 |
+
| 1.25 | 120 | 0.0009 | - |
|
276 |
+
| 1.3542 | 130 | 0.0009 | - |
|
277 |
+
| 1.4583 | 140 | 0.0008 | - |
|
278 |
+
| 1.5625 | 150 | 0.0009 | - |
|
279 |
+
| 1.6667 | 160 | 0.0009 | - |
|
280 |
+
| 1.7708 | 170 | 0.0008 | - |
|
281 |
+
| 1.875 | 180 | 0.0008 | - |
|
282 |
+
| 1.9792 | 190 | 0.0007 | - |
|
283 |
+
| 2.0833 | 200 | 0.0007 | - |
|
284 |
+
| 2.1875 | 210 | 0.0007 | - |
|
285 |
+
| 2.2917 | 220 | 0.0007 | - |
|
286 |
+
| 2.3958 | 230 | 0.0006 | - |
|
287 |
+
| 2.5 | 240 | 0.0007 | - |
|
288 |
+
| 2.6042 | 250 | 0.0007 | - |
|
289 |
+
| 2.7083 | 260 | 0.0007 | - |
|
290 |
+
| 2.8125 | 270 | 0.0006 | - |
|
291 |
+
| 2.9167 | 280 | 0.0006 | - |
|
292 |
+
| 3.0208 | 290 | 0.0006 | - |
|
293 |
+
| 3.125 | 300 | 0.0006 | - |
|
294 |
+
| 3.2292 | 310 | 0.0006 | - |
|
295 |
+
| 3.3333 | 320 | 0.0006 | - |
|
296 |
+
| 3.4375 | 330 | 0.0006 | - |
|
297 |
+
| 3.5417 | 340 | 0.0006 | - |
|
298 |
+
| 3.6458 | 350 | 0.0005 | - |
|
299 |
+
| 3.75 | 360 | 0.0005 | - |
|
300 |
+
| 3.8542 | 370 | 0.0006 | - |
|
301 |
+
| 3.9583 | 380 | 0.0005 | - |
|
302 |
+
| 4.0625 | 390 | 0.0005 | - |
|
303 |
+
| 4.1667 | 400 | 0.0005 | - |
|
304 |
+
| 4.2708 | 410 | 0.0005 | - |
|
305 |
+
| 4.375 | 420 | 0.0006 | - |
|
306 |
+
| 4.4792 | 430 | 0.0005 | - |
|
307 |
+
| 4.5833 | 440 | 0.0005 | - |
|
308 |
+
| 4.6875 | 450 | 0.0005 | - |
|
309 |
+
| 4.7917 | 460 | 0.0005 | - |
|
310 |
+
| 4.8958 | 470 | 0.0005 | - |
|
311 |
+
| 5.0 | 480 | 0.0004 | - |
|
312 |
+
| 5.1042 | 490 | 0.0005 | - |
|
313 |
+
| 5.2083 | 500 | 0.0005 | - |
|
314 |
+
| 5.3125 | 510 | 0.0004 | - |
|
315 |
+
| 5.4167 | 520 | 0.0005 | - |
|
316 |
+
| 5.5208 | 530 | 0.0005 | - |
|
317 |
+
| 5.625 | 540 | 0.0005 | - |
|
318 |
+
| 5.7292 | 550 | 0.0005 | - |
|
319 |
+
| 5.8333 | 560 | 0.0004 | - |
|
320 |
+
| 5.9375 | 570 | 0.0004 | - |
|
321 |
+
| 6.0417 | 580 | 0.0004 | - |
|
322 |
+
| 6.1458 | 590 | 0.0004 | - |
|
323 |
+
| 6.25 | 600 | 0.0004 | - |
|
324 |
+
| 6.3542 | 610 | 0.0005 | - |
|
325 |
+
| 6.4583 | 620 | 0.0004 | - |
|
326 |
+
| 6.5625 | 630 | 0.0005 | - |
|
327 |
+
| 6.6667 | 640 | 0.0004 | - |
|
328 |
+
| 6.7708 | 650 | 0.0004 | - |
|
329 |
+
| 6.875 | 660 | 0.0004 | - |
|
330 |
+
| 6.9792 | 670 | 0.0004 | - |
|
331 |
+
| 7.0833 | 680 | 0.0004 | - |
|
332 |
+
| 7.1875 | 690 | 0.0004 | - |
|
333 |
+
| 7.2917 | 700 | 0.0004 | - |
|
334 |
+
| 7.3958 | 710 | 0.0004 | - |
|
335 |
+
| 7.5 | 720 | 0.0004 | - |
|
336 |
+
| 7.6042 | 730 | 0.0004 | - |
|
337 |
+
| 7.7083 | 740 | 0.0004 | - |
|
338 |
+
| 7.8125 | 750 | 0.0004 | - |
|
339 |
+
| 7.9167 | 760 | 0.0004 | - |
|
340 |
+
| 8.0208 | 770 | 0.0004 | - |
|
341 |
+
| 8.125 | 780 | 0.0004 | - |
|
342 |
+
| 8.2292 | 790 | 0.0004 | - |
|
343 |
+
| 8.3333 | 800 | 0.0004 | - |
|
344 |
+
| 8.4375 | 810 | 0.0004 | - |
|
345 |
+
| 8.5417 | 820 | 0.0004 | - |
|
346 |
+
| 8.6458 | 830 | 0.0004 | - |
|
347 |
+
| 8.75 | 840 | 0.0004 | - |
|
348 |
+
| 8.8542 | 850 | 0.0004 | - |
|
349 |
+
| 8.9583 | 860 | 0.0004 | - |
|
350 |
+
| 9.0625 | 870 | 0.0004 | - |
|
351 |
+
| 9.1667 | 880 | 0.0004 | - |
|
352 |
+
| 9.2708 | 890 | 0.0004 | - |
|
353 |
+
| 9.375 | 900 | 0.0004 | - |
|
354 |
+
| 9.4792 | 910 | 0.0004 | - |
|
355 |
+
| 9.5833 | 920 | 0.0004 | - |
|
356 |
+
| 9.6875 | 930 | 0.0004 | - |
|
357 |
+
| 9.7917 | 940 | 0.0004 | - |
|
358 |
+
| 9.8958 | 950 | 0.0004 | - |
|
359 |
+
| 10.0 | 960 | 0.0004 | - |
|
360 |
+
| 0.0046 | 1 | 0.049 | - |
|
361 |
+
| 0.4630 | 100 | 0.035 | - |
|
362 |
+
| 0.9259 | 200 | 0.0097 | - |
|
363 |
+
| 1.3889 | 300 | 0.0007 | - |
|
364 |
+
| 1.8519 | 400 | 0.0004 | - |
|
365 |
+
| 2.3148 | 500 | 0.0004 | - |
|
366 |
+
| 2.7778 | 600 | 0.0004 | - |
|
367 |
+
| 3.2407 | 700 | 0.0004 | - |
|
368 |
+
| 3.7037 | 800 | 0.0004 | - |
|
369 |
+
| 4.1667 | 900 | 0.0004 | - |
|
370 |
+
| 4.6296 | 1000 | 0.0003 | - |
|
371 |
+
| 5.0926 | 1100 | 0.0003 | - |
|
372 |
+
| 5.5556 | 1200 | 0.0003 | - |
|
373 |
+
| 6.0185 | 1300 | 0.0003 | - |
|
374 |
+
| 6.4815 | 1400 | 0.0003 | - |
|
375 |
+
| 6.9444 | 1500 | 0.0003 | - |
|
376 |
+
| 7.4074 | 1600 | 0.0003 | - |
|
377 |
+
| 7.8704 | 1700 | 0.0003 | - |
|
378 |
+
| 8.3333 | 1800 | 0.0003 | - |
|
379 |
+
| 8.7963 | 1900 | 0.0003 | - |
|
380 |
+
| 9.2593 | 2000 | 0.0003 | - |
|
381 |
+
| 9.7222 | 2100 | 0.0003 | - |
|
382 |
+
|
383 |
+
### Framework Versions
|
384 |
+
- Python: 3.11.0
|
385 |
+
- SetFit: 1.1.0
|
386 |
+
- Sentence Transformers: 3.3.1
|
387 |
+
- Transformers: 4.44.2
|
388 |
+
- PyTorch: 2.4.1
|
389 |
+
- Datasets: 2.19.0
|
390 |
+
- Tokenizers: 0.19.1
|
391 |
+
|
392 |
+
## Citation
|
393 |
+
|
394 |
+
### BibTeX
|
395 |
+
```bibtex
|
396 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
397 |
+
doi = {10.48550/ARXIV.2209.11055},
|
398 |
+
url = {https://arxiv.org/abs/2209.11055},
|
399 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
400 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
401 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
402 |
+
publisher = {arXiv},
|
403 |
+
year = {2022},
|
404 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
405 |
+
}
|
406 |
+
```
|
407 |
+
|
408 |
+
<!--
|
409 |
+
## Glossary
|
410 |
+
|
411 |
+
*Clearly define terms in order to be accessible across audiences.*
|
412 |
+
-->
|
413 |
+
|
414 |
+
<!--
|
415 |
+
## Model Card Authors
|
416 |
+
|
417 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
418 |
+
-->
|
419 |
+
|
420 |
+
<!--
|
421 |
+
## Model Card Contact
|
422 |
+
|
423 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
424 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.44.2",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"uszkodzenia",
|
5 |
+
"wady fabryczne",
|
6 |
+
"niezgodno\u015b\u0107 towaru z zam\u00f3wieniem",
|
7 |
+
"b\u0142\u0119dny monta\u017c"
|
8 |
+
]
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4311eb5c18640caba9acc56709d4a03bcc4dc0083e8664a6f37adadd5b0be116
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d2aa0524b52f8838d0aa130ed7ae8e5cfa7a6d9e038b44f39aabe389e5ba0cf
|
3 |
+
size 13191
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|