Bart-fusion / code /model_fusion.py
jamimulgrave's picture
Upload 10 files
c961996
import torch
from torch import nn
from transformers import BartTokenizer
from modeling_bart import BartForMultimodalGeneration
from music_encoder import CNNSA
class CommentGenerator_fusion(nn.Module):
def __init__(self):
super(CommentGenerator_fusion, self).__init__()
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
model_path = "best_model.pth"
self.music_encoder = CNNSA().cuda()
self.music_encoder.load_state_dict(torch.load(model_path))
# trial: fix music encoder's params
for params in self.music_encoder.parameters():
params.requires_grad = False
self.bart = BartForMultimodalGeneration.from_pretrained("facebook/bart-base",
fusion_layers=[4,5], # [4,5]
use_forget_gate=False, # [True]
dim_common=768, # 256
n_attn_heads=1).cuda()
def forward(self, input_sentence_list, music_ids, labels=None):
encoded_input = self.tokenizer(
input_sentence_list,
padding=True,
truncation=True,
max_length=512,
return_tensors='pt',
)
if labels is not None:
labels = self.tokenizer(
labels,
padding=True,
truncation=True,
max_length=512,
return_tensors='pt',
)
music_features = self.music_encoder(music_ids)
output = self.bart(input_ids=encoded_input['input_ids'].cuda(),
attention_mask=encoded_input['attention_mask'].cuda(),
labels=labels['input_ids'].cuda(),
music_features=music_features
# labels
)
return output
def generate(self, input_sentence_list, music_ids, is_cuda=True):
encoded_input = self.tokenizer(input_sentence_list,
padding=True,
truncation=True,
return_tensors='pt',
)
music_features = self.music_encoder(music_ids)
output_ids = self.bart.generate(encoded_input['input_ids'].cuda(),
num_beams=5,
max_length=512,
early_stopping=True,
do_sample=True,
music_features=music_features)
return ([self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for g in output_ids])
# tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
# encoded_input = tokenizer(['Hello all', 'Hi all'], return_tensors='pt')
# print(encoded_input)