|
from typing import List, Tuple |
|
|
|
import torch |
|
import torchaudio |
|
from torch import nn |
|
|
|
from vocos.modules import safe_log |
|
|
|
|
|
class MelSpecReconstructionLoss(nn.Module): |
|
""" |
|
L1 distance between the mel-scaled magnitude spectrograms of the ground truth sample and the generated sample |
|
""" |
|
|
|
def __init__( |
|
self, sample_rate: int = 24000, n_fft: int = 1024, hop_length: int = 256, n_mels: int = 100, |
|
): |
|
super().__init__() |
|
self.mel_spec = torchaudio.transforms.MelSpectrogram( |
|
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, center=True, power=1, |
|
) |
|
|
|
def forward(self, y_hat, y) -> torch.Tensor: |
|
""" |
|
Args: |
|
y_hat (Tensor): Predicted audio waveform. |
|
y (Tensor): Ground truth audio waveform. |
|
|
|
Returns: |
|
Tensor: L1 loss between the mel-scaled magnitude spectrograms. |
|
""" |
|
mel_hat = safe_log(self.mel_spec(y_hat)) |
|
mel = safe_log(self.mel_spec(y)) |
|
|
|
loss = torch.nn.functional.l1_loss(mel, mel_hat) |
|
|
|
return loss |
|
|
|
|
|
class GeneratorLoss(nn.Module): |
|
""" |
|
Generator Loss module. Calculates the loss for the generator based on discriminator outputs. |
|
""" |
|
|
|
def forward(self, disc_outputs: List[torch.Tensor]) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
""" |
|
Args: |
|
disc_outputs (List[Tensor]): List of discriminator outputs. |
|
|
|
Returns: |
|
Tuple[Tensor, List[Tensor]]: Tuple containing the total loss and a list of loss values from |
|
the sub-discriminators |
|
""" |
|
loss = torch.zeros(1, device=disc_outputs[0].device, dtype=disc_outputs[0].dtype) |
|
gen_losses = [] |
|
for dg in disc_outputs: |
|
l = torch.mean(torch.clamp(1 - dg, min=0)) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |
|
|
|
|
|
class DiscriminatorLoss(nn.Module): |
|
""" |
|
Discriminator Loss module. Calculates the loss for the discriminator based on real and generated outputs. |
|
""" |
|
|
|
def forward( |
|
self, disc_real_outputs: List[torch.Tensor], disc_generated_outputs: List[torch.Tensor] |
|
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]: |
|
""" |
|
Args: |
|
disc_real_outputs (List[Tensor]): List of discriminator outputs for real samples. |
|
disc_generated_outputs (List[Tensor]): List of discriminator outputs for generated samples. |
|
|
|
Returns: |
|
Tuple[Tensor, List[Tensor], List[Tensor]]: A tuple containing the total loss, a list of loss values from |
|
the sub-discriminators for real outputs, and a list of |
|
loss values for generated outputs. |
|
""" |
|
loss = torch.zeros(1, device=disc_real_outputs[0].device, dtype=disc_real_outputs[0].dtype) |
|
r_losses = [] |
|
g_losses = [] |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
r_loss = torch.mean(torch.clamp(1 - dr, min=0)) |
|
g_loss = torch.mean(torch.clamp(1 + dg, min=0)) |
|
loss += r_loss + g_loss |
|
r_losses.append(r_loss) |
|
g_losses.append(g_loss) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
|
|
class FeatureMatchingLoss(nn.Module): |
|
""" |
|
Feature Matching Loss module. Calculates the feature matching loss between feature maps of the sub-discriminators. |
|
""" |
|
|
|
def forward(self, fmap_r: List[List[torch.Tensor]], fmap_g: List[List[torch.Tensor]]) -> torch.Tensor: |
|
""" |
|
Args: |
|
fmap_r (List[List[Tensor]]): List of feature maps from real samples. |
|
fmap_g (List[List[Tensor]]): List of feature maps from generated samples. |
|
|
|
Returns: |
|
Tensor: The calculated feature matching loss. |
|
""" |
|
loss = torch.zeros(1, device=fmap_r[0][0].device, dtype=fmap_r[0][0].dtype) |
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss |
|
|