jamiehudson commited on
Commit
0e1eb5a
·
verified ·
1 Parent(s): 2fdfa5a

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ widget:
14
+ - text: man, product/whatever is my new best friend. i like product but the integration
15
+ of product into office and product is a lot of fun. i just spent the day feeding
16
+ it my training presentation i'm preparing in my day job and it was very helpful.
17
+ almost better than humans.
18
+ - text: that's great news! product is the perfect platform to share these advanced
19
+ product prompts and help more users get the most out of it!
20
+ - text: after only one week's trial of the new product with brand enabled, i have
21
+ replaced my default browser product that i was using for more than 7 years with
22
+ new product. i no longer need to spend a lot of time finding answers from a bunch
23
+ of search results and web pages. it's amazing
24
+ - text: very impressive. brand is finally fighting back. i am just a little worried
25
+ about the scalability of such a high context window size, since even in their
26
+ demos it took quite a while to process everything. regardless, i am very interested
27
+ in seeing what types of capabilities a >1m token size window can unleash.
28
+ - text: product the way it shows the sources is so fucking cool, this new ai is amazing
29
+ pipeline_tag: text-classification
30
+ inference: true
31
+ base_model: BAAI/bge-base-en-v1.5
32
+ model-index:
33
+ - name: SetFit with BAAI/bge-base-en-v1.5
34
+ results:
35
+ - task:
36
+ type: text-classification
37
+ name: Text Classification
38
+ dataset:
39
+ name: Unknown
40
+ type: unknown
41
+ split: test
42
+ metrics:
43
+ - type: accuracy
44
+ value: 0.8996138996138996
45
+ name: Accuracy
46
+ - type: f1
47
+ value:
48
+ - 0.5217391304347826
49
+ - 0.5142857142857142
50
+ - 0.9478260869565217
51
+ name: F1
52
+ - type: precision
53
+ value:
54
+ - 0.42857142857142855
55
+ - 0.4090909090909091
56
+ - 0.9775784753363229
57
+ name: Precision
58
+ - type: recall
59
+ value:
60
+ - 0.6666666666666666
61
+ - 0.6923076923076923
62
+ - 0.919831223628692
63
+ name: Recall
64
+ ---
65
+
66
+ # SetFit with BAAI/bge-base-en-v1.5
67
+
68
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
69
+
70
+ The model has been trained using an efficient few-shot learning technique that involves:
71
+
72
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
73
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
74
+
75
+ ## Model Details
76
+
77
+ ### Model Description
78
+ - **Model Type:** SetFit
79
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
80
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
81
+ - **Maximum Sequence Length:** 512 tokens
82
+ - **Number of Classes:** 3 classes
83
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
84
+ <!-- - **Language:** Unknown -->
85
+ <!-- - **License:** Unknown -->
86
+
87
+ ### Model Sources
88
+
89
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
90
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
91
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
92
+
93
+ ### Model Labels
94
+ | Label | Examples |
95
+ |:--------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
96
+ | neither | <ul><li>'it might sound strange, but in my opinion, sams intelligence intimidates him from expressing himself and creating personal art. for example, since product is a masterpiece in the sense, the bar is set very high, so he might even subconsciously be unable to put anything out less'</li><li>'lately, i really enjoy the genre of joke that makes you say the punchline in your head.'</li><li>'any idea in regard to the product product not being seen? i have 1 device with it, the rest are missing it. same wufb policies.'</li></ul> |
97
+ | pit | <ul><li>"brand or brand are behaving like lazy interns. when you need something useful from them like researching and consolidating a large bunch of information they'll just tell you to look it up yourself or right away refuse to do the work. useless."</li><li>'the moment i found out what exactly product does i just uninstalled product and went back to 10'</li><li>"at least 80% of the product stuff posted here has produced erroneous results, and many have utilized ip theft/copyright infringement in informing the model. we're not going to spend community time on it at this point."</li></ul> |
98
+ | peak | <ul><li>"man, product/whatever is my new best friend. i like product but the integration of product into office and product is a lot of fun. i just spent the day feeding it my training presentation i'm preparing in my day job and it was very helpful. almost better than humans."</li><li>"excited to share my experience with product, an incredible language model by brand! from answering questions to creative writing, it's a powerful tool that amazes me every time."</li><li>'product in product is a game changer!! here is a list of things it can do: it can answer your questions in natural language. it can summarize content to give you a brief overview it can adjust your pcs settings it can help troubleshoot issues. 1/2'</li></ul> |
99
+
100
+ ## Evaluation
101
+
102
+ ### Metrics
103
+ | Label | Accuracy | F1 | Precision | Recall |
104
+ |:--------|:---------|:-------------------------------------------------------------|:--------------------------------------------------------------|:------------------------------------------------------------|
105
+ | **all** | 0.8996 | [0.5217391304347826, 0.5142857142857142, 0.9478260869565217] | [0.42857142857142855, 0.4090909090909091, 0.9775784753363229] | [0.6666666666666666, 0.6923076923076923, 0.919831223628692] |
106
+
107
+ ## Uses
108
+
109
+ ### Direct Use for Inference
110
+
111
+ First install the SetFit library:
112
+
113
+ ```bash
114
+ pip install setfit
115
+ ```
116
+
117
+ Then you can load this model and run inference.
118
+
119
+ ```python
120
+ from setfit import SetFitModel
121
+
122
+ # Download from the 🤗 Hub
123
+ model = SetFitModel.from_pretrained("jamiehudson/725_model_v2")
124
+ # Run inference
125
+ preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing")
126
+ ```
127
+
128
+ <!--
129
+ ### Downstream Use
130
+
131
+ *List how someone could finetune this model on their own dataset.*
132
+ -->
133
+
134
+ <!--
135
+ ### Out-of-Scope Use
136
+
137
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
138
+ -->
139
+
140
+ <!--
141
+ ## Bias, Risks and Limitations
142
+
143
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
144
+ -->
145
+
146
+ <!--
147
+ ### Recommendations
148
+
149
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
150
+ -->
151
+
152
+ ## Training Details
153
+
154
+ ### Training Set Metrics
155
+ | Training set | Min | Median | Max |
156
+ |:-------------|:----|:--------|:----|
157
+ | Word count | 5 | 29.1484 | 90 |
158
+
159
+ | Label | Training Sample Count |
160
+ |:--------|:----------------------|
161
+ | pit | 44 |
162
+ | peak | 62 |
163
+ | neither | 150 |
164
+
165
+ ### Training Hyperparameters
166
+ - batch_size: (32, 32)
167
+ - num_epochs: (3, 3)
168
+ - max_steps: -1
169
+ - sampling_strategy: oversampling
170
+ - body_learning_rate: (2e-05, 1e-05)
171
+ - head_learning_rate: 0.01
172
+ - loss: CosineSimilarityLoss
173
+ - distance_metric: cosine_distance
174
+ - margin: 0.25
175
+ - end_to_end: False
176
+ - use_amp: False
177
+ - warmup_proportion: 0.1
178
+ - seed: 42
179
+ - eval_max_steps: -1
180
+ - load_best_model_at_end: False
181
+
182
+ ### Training Results
183
+ | Epoch | Step | Training Loss | Validation Loss |
184
+ |:------:|:----:|:-------------:|:---------------:|
185
+ | 0.0000 | 1 | 0.2383 | - |
186
+ | 0.0119 | 50 | 0.2395 | - |
187
+ | 0.0237 | 100 | 0.2129 | - |
188
+ | 0.0356 | 150 | 0.1317 | - |
189
+ | 0.0474 | 200 | 0.0695 | - |
190
+ | 0.0593 | 250 | 0.01 | - |
191
+ | 0.0711 | 300 | 0.0063 | - |
192
+ | 0.0830 | 350 | 0.0028 | - |
193
+ | 0.0948 | 400 | 0.0026 | - |
194
+ | 0.1067 | 450 | 0.0021 | - |
195
+ | 0.1185 | 500 | 0.0018 | - |
196
+ | 0.1304 | 550 | 0.0016 | - |
197
+ | 0.1422 | 600 | 0.0014 | - |
198
+ | 0.1541 | 650 | 0.0015 | - |
199
+ | 0.1659 | 700 | 0.0013 | - |
200
+ | 0.1778 | 750 | 0.0012 | - |
201
+ | 0.1896 | 800 | 0.0012 | - |
202
+ | 0.2015 | 850 | 0.0012 | - |
203
+ | 0.2133 | 900 | 0.0011 | - |
204
+ | 0.2252 | 950 | 0.0011 | - |
205
+ | 0.2370 | 1000 | 0.0009 | - |
206
+ | 0.2489 | 1050 | 0.001 | - |
207
+ | 0.2607 | 1100 | 0.0009 | - |
208
+ | 0.2726 | 1150 | 0.0008 | - |
209
+ | 0.2844 | 1200 | 0.0008 | - |
210
+ | 0.2963 | 1250 | 0.0009 | - |
211
+ | 0.3081 | 1300 | 0.0008 | - |
212
+ | 0.3200 | 1350 | 0.0007 | - |
213
+ | 0.3318 | 1400 | 0.0007 | - |
214
+ | 0.3437 | 1450 | 0.0007 | - |
215
+ | 0.3555 | 1500 | 0.0006 | - |
216
+ | 0.3674 | 1550 | 0.0007 | - |
217
+ | 0.3792 | 1600 | 0.0007 | - |
218
+ | 0.3911 | 1650 | 0.0008 | - |
219
+ | 0.4029 | 1700 | 0.0006 | - |
220
+ | 0.4148 | 1750 | 0.0006 | - |
221
+ | 0.4266 | 1800 | 0.0006 | - |
222
+ | 0.4385 | 1850 | 0.0006 | - |
223
+ | 0.4503 | 1900 | 0.0006 | - |
224
+ | 0.4622 | 1950 | 0.0006 | - |
225
+ | 0.4740 | 2000 | 0.0006 | - |
226
+ | 0.4859 | 2050 | 0.0005 | - |
227
+ | 0.4977 | 2100 | 0.0006 | - |
228
+ | 0.5096 | 2150 | 0.0006 | - |
229
+ | 0.5215 | 2200 | 0.0005 | - |
230
+ | 0.5333 | 2250 | 0.0005 | - |
231
+ | 0.5452 | 2300 | 0.0005 | - |
232
+ | 0.5570 | 2350 | 0.0006 | - |
233
+ | 0.5689 | 2400 | 0.0005 | - |
234
+ | 0.5807 | 2450 | 0.0005 | - |
235
+ | 0.5926 | 2500 | 0.0006 | - |
236
+ | 0.6044 | 2550 | 0.0006 | - |
237
+ | 0.6163 | 2600 | 0.0005 | - |
238
+ | 0.6281 | 2650 | 0.0005 | - |
239
+ | 0.6400 | 2700 | 0.0005 | - |
240
+ | 0.6518 | 2750 | 0.0005 | - |
241
+ | 0.6637 | 2800 | 0.0005 | - |
242
+ | 0.6755 | 2850 | 0.0005 | - |
243
+ | 0.6874 | 2900 | 0.0005 | - |
244
+ | 0.6992 | 2950 | 0.0004 | - |
245
+ | 0.7111 | 3000 | 0.0004 | - |
246
+ | 0.7229 | 3050 | 0.0004 | - |
247
+ | 0.7348 | 3100 | 0.0005 | - |
248
+ | 0.7466 | 3150 | 0.0005 | - |
249
+ | 0.7585 | 3200 | 0.0005 | - |
250
+ | 0.7703 | 3250 | 0.0004 | - |
251
+ | 0.7822 | 3300 | 0.0004 | - |
252
+ | 0.7940 | 3350 | 0.0004 | - |
253
+ | 0.8059 | 3400 | 0.0004 | - |
254
+ | 0.8177 | 3450 | 0.0004 | - |
255
+ | 0.8296 | 3500 | 0.0004 | - |
256
+ | 0.8414 | 3550 | 0.0004 | - |
257
+ | 0.8533 | 3600 | 0.0004 | - |
258
+ | 0.8651 | 3650 | 0.0004 | - |
259
+ | 0.8770 | 3700 | 0.0004 | - |
260
+ | 0.8888 | 3750 | 0.0004 | - |
261
+ | 0.9007 | 3800 | 0.0004 | - |
262
+ | 0.9125 | 3850 | 0.0004 | - |
263
+ | 0.9244 | 3900 | 0.0005 | - |
264
+ | 0.9362 | 3950 | 0.0004 | - |
265
+ | 0.9481 | 4000 | 0.0004 | - |
266
+ | 0.9599 | 4050 | 0.0004 | - |
267
+ | 0.9718 | 4100 | 0.0004 | - |
268
+ | 0.9836 | 4150 | 0.0004 | - |
269
+ | 0.9955 | 4200 | 0.0004 | - |
270
+ | 0.0000 | 1 | 0.2717 | - |
271
+ | 0.0013 | 50 | 0.0686 | - |
272
+ | 0.0026 | 100 | 0.088 | - |
273
+ | 0.0000 | 1 | 0.1796 | - |
274
+ | 0.0013 | 50 | 0.0584 | - |
275
+ | 0.0026 | 100 | 0.1018 | - |
276
+ | 0.0039 | 150 | 0.128 | - |
277
+ | 0.0052 | 200 | 0.0761 | - |
278
+ | 0.0065 | 250 | 0.0216 | - |
279
+ | 0.0078 | 300 | 0.1652 | - |
280
+ | 0.0091 | 350 | 0.0384 | - |
281
+ | 0.0104 | 400 | 0.0062 | - |
282
+ | 0.0117 | 450 | 0.0442 | - |
283
+ | 0.0130 | 500 | 0.0452 | - |
284
+ | 0.0143 | 550 | 0.0081 | - |
285
+ | 0.0156 | 600 | 0.0205 | - |
286
+ | 0.0169 | 650 | 0.0125 | - |
287
+ | 0.0182 | 700 | 0.0012 | - |
288
+ | 0.0195 | 750 | 0.0011 | - |
289
+ | 0.0208 | 800 | 0.0315 | - |
290
+ | 0.0221 | 850 | 0.0009 | - |
291
+ | 0.0009 | 1 | 0.0006 | - |
292
+ | 0.0429 | 50 | 0.0008 | - |
293
+ | 0.0858 | 100 | 0.0005 | - |
294
+ | 0.1288 | 150 | 0.0015 | - |
295
+ | 0.1717 | 200 | 0.0013 | - |
296
+ | 0.2146 | 250 | 0.0237 | - |
297
+ | 0.2575 | 300 | 0.0304 | - |
298
+ | 0.3004 | 350 | 0.0005 | - |
299
+ | 0.3433 | 400 | 0.0013 | - |
300
+ | 0.3863 | 450 | 0.03 | - |
301
+ | 0.4292 | 500 | 0.0005 | - |
302
+ | 0.4721 | 550 | 0.0006 | - |
303
+ | 0.5150 | 600 | 0.0005 | - |
304
+ | 0.5579 | 650 | 0.0005 | - |
305
+ | 0.6009 | 700 | 0.0004 | - |
306
+ | 0.6438 | 750 | 0.0004 | - |
307
+ | 0.6867 | 800 | 0.0004 | - |
308
+ | 0.7296 | 850 | 0.0004 | - |
309
+ | 0.7725 | 900 | 0.0004 | - |
310
+ | 0.8155 | 950 | 0.0003 | - |
311
+ | 0.8584 | 1000 | 0.0004 | - |
312
+ | 0.9013 | 1050 | 0.0003 | - |
313
+ | 0.9442 | 1100 | 0.0004 | - |
314
+ | 0.9871 | 1150 | 0.0003 | - |
315
+ | 1.0300 | 1200 | 0.0003 | - |
316
+ | 1.0730 | 1250 | 0.0004 | - |
317
+ | 1.1159 | 1300 | 0.0003 | - |
318
+ | 1.1588 | 1350 | 0.0005 | - |
319
+ | 1.2017 | 1400 | 0.0003 | - |
320
+ | 1.2446 | 1450 | 0.0003 | - |
321
+ | 1.2876 | 1500 | 0.0003 | - |
322
+ | 1.3305 | 1550 | 0.0003 | - |
323
+ | 1.3734 | 1600 | 0.0003 | - |
324
+ | 1.4163 | 1650 | 0.0003 | - |
325
+ | 1.4592 | 1700 | 0.0003 | - |
326
+ | 1.5021 | 1750 | 0.0005 | - |
327
+ | 1.5451 | 1800 | 0.0003 | - |
328
+ | 1.5880 | 1850 | 0.0003 | - |
329
+ | 1.6309 | 1900 | 0.0003 | - |
330
+ | 1.6738 | 1950 | 0.0005 | - |
331
+ | 1.7167 | 2000 | 0.0003 | - |
332
+ | 1.7597 | 2050 | 0.0007 | - |
333
+ | 1.8026 | 2100 | 0.0003 | - |
334
+ | 1.8455 | 2150 | 0.0003 | - |
335
+ | 1.8884 | 2200 | 0.0003 | - |
336
+ | 1.9313 | 2250 | 0.0003 | - |
337
+ | 1.9742 | 2300 | 0.0003 | - |
338
+ | 2.0172 | 2350 | 0.0003 | - |
339
+ | 2.0601 | 2400 | 0.0003 | - |
340
+ | 2.1030 | 2450 | 0.0003 | - |
341
+ | 2.1459 | 2500 | 0.0003 | - |
342
+ | 2.1888 | 2550 | 0.0002 | - |
343
+ | 2.2318 | 2600 | 0.0003 | - |
344
+ | 2.2747 | 2650 | 0.0004 | - |
345
+ | 2.3176 | 2700 | 0.0002 | - |
346
+ | 2.3605 | 2750 | 0.0003 | - |
347
+ | 2.4034 | 2800 | 0.0002 | - |
348
+ | 2.4464 | 2850 | 0.0002 | - |
349
+ | 2.4893 | 2900 | 0.0002 | - |
350
+ | 2.5322 | 2950 | 0.0002 | - |
351
+ | 2.5751 | 3000 | 0.0002 | - |
352
+ | 2.6180 | 3050 | 0.0004 | - |
353
+ | 2.6609 | 3100 | 0.0004 | - |
354
+ | 2.7039 | 3150 | 0.0003 | - |
355
+ | 2.7468 | 3200 | 0.0003 | - |
356
+ | 2.7897 | 3250 | 0.0003 | - |
357
+ | 2.8326 | 3300 | 0.0003 | - |
358
+ | 2.8755 | 3350 | 0.0003 | - |
359
+ | 2.9185 | 3400 | 0.0003 | - |
360
+ | 2.9614 | 3450 | 0.0005 | - |
361
+
362
+ ### Framework Versions
363
+ - Python: 3.10.12
364
+ - SetFit: 1.0.3
365
+ - Sentence Transformers: 2.5.1
366
+ - Transformers: 4.38.1
367
+ - PyTorch: 2.1.0+cu121
368
+ - Datasets: 2.18.0
369
+ - Tokenizers: 0.15.2
370
+
371
+ ## Citation
372
+
373
+ ### BibTeX
374
+ ```bibtex
375
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
376
+ doi = {10.48550/ARXIV.2209.11055},
377
+ url = {https://arxiv.org/abs/2209.11055},
378
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
379
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
380
+ title = {Efficient Few-Shot Learning Without Prompts},
381
+ publisher = {arXiv},
382
+ year = {2022},
383
+ copyright = {Creative Commons Attribution 4.0 International}
384
+ }
385
+ ```
386
+
387
+ <!--
388
+ ## Glossary
389
+
390
+ *Clearly define terms in order to be accessible across audiences.*
391
+ -->
392
+
393
+ <!--
394
+ ## Model Card Authors
395
+
396
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
397
+ -->
398
+
399
+ <!--
400
+ ## Model Card Contact
401
+
402
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
403
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.38.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "pit",
5
+ "peak",
6
+ "neither"
7
+ ]
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:004b5461c619a69bbdbc53de8e41f5c382c82dba86a08f72e6131700042acdd4
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9a4836235ea96c64afb77f64de068712bb4003db3b9225c8a65d897ed11f21e
3
+ size 19327
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff