jamiehudson
commited on
Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +403 -0
- config.json +32 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +8 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
widget:
|
14 |
+
- text: man, product/whatever is my new best friend. i like product but the integration
|
15 |
+
of product into office and product is a lot of fun. i just spent the day feeding
|
16 |
+
it my training presentation i'm preparing in my day job and it was very helpful.
|
17 |
+
almost better than humans.
|
18 |
+
- text: that's great news! product is the perfect platform to share these advanced
|
19 |
+
product prompts and help more users get the most out of it!
|
20 |
+
- text: after only one week's trial of the new product with brand enabled, i have
|
21 |
+
replaced my default browser product that i was using for more than 7 years with
|
22 |
+
new product. i no longer need to spend a lot of time finding answers from a bunch
|
23 |
+
of search results and web pages. it's amazing
|
24 |
+
- text: very impressive. brand is finally fighting back. i am just a little worried
|
25 |
+
about the scalability of such a high context window size, since even in their
|
26 |
+
demos it took quite a while to process everything. regardless, i am very interested
|
27 |
+
in seeing what types of capabilities a >1m token size window can unleash.
|
28 |
+
- text: product the way it shows the sources is so fucking cool, this new ai is amazing
|
29 |
+
pipeline_tag: text-classification
|
30 |
+
inference: true
|
31 |
+
base_model: BAAI/bge-base-en-v1.5
|
32 |
+
model-index:
|
33 |
+
- name: SetFit with BAAI/bge-base-en-v1.5
|
34 |
+
results:
|
35 |
+
- task:
|
36 |
+
type: text-classification
|
37 |
+
name: Text Classification
|
38 |
+
dataset:
|
39 |
+
name: Unknown
|
40 |
+
type: unknown
|
41 |
+
split: test
|
42 |
+
metrics:
|
43 |
+
- type: accuracy
|
44 |
+
value: 0.8996138996138996
|
45 |
+
name: Accuracy
|
46 |
+
- type: f1
|
47 |
+
value:
|
48 |
+
- 0.5217391304347826
|
49 |
+
- 0.5142857142857142
|
50 |
+
- 0.9478260869565217
|
51 |
+
name: F1
|
52 |
+
- type: precision
|
53 |
+
value:
|
54 |
+
- 0.42857142857142855
|
55 |
+
- 0.4090909090909091
|
56 |
+
- 0.9775784753363229
|
57 |
+
name: Precision
|
58 |
+
- type: recall
|
59 |
+
value:
|
60 |
+
- 0.6666666666666666
|
61 |
+
- 0.6923076923076923
|
62 |
+
- 0.919831223628692
|
63 |
+
name: Recall
|
64 |
+
---
|
65 |
+
|
66 |
+
# SetFit with BAAI/bge-base-en-v1.5
|
67 |
+
|
68 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
69 |
+
|
70 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
71 |
+
|
72 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
73 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
74 |
+
|
75 |
+
## Model Details
|
76 |
+
|
77 |
+
### Model Description
|
78 |
+
- **Model Type:** SetFit
|
79 |
+
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
|
80 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
81 |
+
- **Maximum Sequence Length:** 512 tokens
|
82 |
+
- **Number of Classes:** 3 classes
|
83 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
84 |
+
<!-- - **Language:** Unknown -->
|
85 |
+
<!-- - **License:** Unknown -->
|
86 |
+
|
87 |
+
### Model Sources
|
88 |
+
|
89 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
90 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
91 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
92 |
+
|
93 |
+
### Model Labels
|
94 |
+
| Label | Examples |
|
95 |
+
|:--------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
96 |
+
| neither | <ul><li>'it might sound strange, but in my opinion, sams intelligence intimidates him from expressing himself and creating personal art. for example, since product is a masterpiece in the sense, the bar is set very high, so he might even subconsciously be unable to put anything out less'</li><li>'lately, i really enjoy the genre of joke that makes you say the punchline in your head.'</li><li>'any idea in regard to the product product not being seen? i have 1 device with it, the rest are missing it. same wufb policies.'</li></ul> |
|
97 |
+
| pit | <ul><li>"brand or brand are behaving like lazy interns. when you need something useful from them like researching and consolidating a large bunch of information they'll just tell you to look it up yourself or right away refuse to do the work. useless."</li><li>'the moment i found out what exactly product does i just uninstalled product and went back to 10'</li><li>"at least 80% of the product stuff posted here has produced erroneous results, and many have utilized ip theft/copyright infringement in informing the model. we're not going to spend community time on it at this point."</li></ul> |
|
98 |
+
| peak | <ul><li>"man, product/whatever is my new best friend. i like product but the integration of product into office and product is a lot of fun. i just spent the day feeding it my training presentation i'm preparing in my day job and it was very helpful. almost better than humans."</li><li>"excited to share my experience with product, an incredible language model by brand! from answering questions to creative writing, it's a powerful tool that amazes me every time."</li><li>'product in product is a game changer!! here is a list of things it can do: it can answer your questions in natural language. it can summarize content to give you a brief overview it can adjust your pcs settings it can help troubleshoot issues. 1/2'</li></ul> |
|
99 |
+
|
100 |
+
## Evaluation
|
101 |
+
|
102 |
+
### Metrics
|
103 |
+
| Label | Accuracy | F1 | Precision | Recall |
|
104 |
+
|:--------|:---------|:-------------------------------------------------------------|:--------------------------------------------------------------|:------------------------------------------------------------|
|
105 |
+
| **all** | 0.8996 | [0.5217391304347826, 0.5142857142857142, 0.9478260869565217] | [0.42857142857142855, 0.4090909090909091, 0.9775784753363229] | [0.6666666666666666, 0.6923076923076923, 0.919831223628692] |
|
106 |
+
|
107 |
+
## Uses
|
108 |
+
|
109 |
+
### Direct Use for Inference
|
110 |
+
|
111 |
+
First install the SetFit library:
|
112 |
+
|
113 |
+
```bash
|
114 |
+
pip install setfit
|
115 |
+
```
|
116 |
+
|
117 |
+
Then you can load this model and run inference.
|
118 |
+
|
119 |
+
```python
|
120 |
+
from setfit import SetFitModel
|
121 |
+
|
122 |
+
# Download from the 🤗 Hub
|
123 |
+
model = SetFitModel.from_pretrained("jamiehudson/725_model_v2")
|
124 |
+
# Run inference
|
125 |
+
preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing")
|
126 |
+
```
|
127 |
+
|
128 |
+
<!--
|
129 |
+
### Downstream Use
|
130 |
+
|
131 |
+
*List how someone could finetune this model on their own dataset.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Out-of-Scope Use
|
136 |
+
|
137 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
## Bias, Risks and Limitations
|
142 |
+
|
143 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
<!--
|
147 |
+
### Recommendations
|
148 |
+
|
149 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
150 |
+
-->
|
151 |
+
|
152 |
+
## Training Details
|
153 |
+
|
154 |
+
### Training Set Metrics
|
155 |
+
| Training set | Min | Median | Max |
|
156 |
+
|:-------------|:----|:--------|:----|
|
157 |
+
| Word count | 5 | 29.1484 | 90 |
|
158 |
+
|
159 |
+
| Label | Training Sample Count |
|
160 |
+
|:--------|:----------------------|
|
161 |
+
| pit | 44 |
|
162 |
+
| peak | 62 |
|
163 |
+
| neither | 150 |
|
164 |
+
|
165 |
+
### Training Hyperparameters
|
166 |
+
- batch_size: (32, 32)
|
167 |
+
- num_epochs: (3, 3)
|
168 |
+
- max_steps: -1
|
169 |
+
- sampling_strategy: oversampling
|
170 |
+
- body_learning_rate: (2e-05, 1e-05)
|
171 |
+
- head_learning_rate: 0.01
|
172 |
+
- loss: CosineSimilarityLoss
|
173 |
+
- distance_metric: cosine_distance
|
174 |
+
- margin: 0.25
|
175 |
+
- end_to_end: False
|
176 |
+
- use_amp: False
|
177 |
+
- warmup_proportion: 0.1
|
178 |
+
- seed: 42
|
179 |
+
- eval_max_steps: -1
|
180 |
+
- load_best_model_at_end: False
|
181 |
+
|
182 |
+
### Training Results
|
183 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
184 |
+
|:------:|:----:|:-------------:|:---------------:|
|
185 |
+
| 0.0000 | 1 | 0.2383 | - |
|
186 |
+
| 0.0119 | 50 | 0.2395 | - |
|
187 |
+
| 0.0237 | 100 | 0.2129 | - |
|
188 |
+
| 0.0356 | 150 | 0.1317 | - |
|
189 |
+
| 0.0474 | 200 | 0.0695 | - |
|
190 |
+
| 0.0593 | 250 | 0.01 | - |
|
191 |
+
| 0.0711 | 300 | 0.0063 | - |
|
192 |
+
| 0.0830 | 350 | 0.0028 | - |
|
193 |
+
| 0.0948 | 400 | 0.0026 | - |
|
194 |
+
| 0.1067 | 450 | 0.0021 | - |
|
195 |
+
| 0.1185 | 500 | 0.0018 | - |
|
196 |
+
| 0.1304 | 550 | 0.0016 | - |
|
197 |
+
| 0.1422 | 600 | 0.0014 | - |
|
198 |
+
| 0.1541 | 650 | 0.0015 | - |
|
199 |
+
| 0.1659 | 700 | 0.0013 | - |
|
200 |
+
| 0.1778 | 750 | 0.0012 | - |
|
201 |
+
| 0.1896 | 800 | 0.0012 | - |
|
202 |
+
| 0.2015 | 850 | 0.0012 | - |
|
203 |
+
| 0.2133 | 900 | 0.0011 | - |
|
204 |
+
| 0.2252 | 950 | 0.0011 | - |
|
205 |
+
| 0.2370 | 1000 | 0.0009 | - |
|
206 |
+
| 0.2489 | 1050 | 0.001 | - |
|
207 |
+
| 0.2607 | 1100 | 0.0009 | - |
|
208 |
+
| 0.2726 | 1150 | 0.0008 | - |
|
209 |
+
| 0.2844 | 1200 | 0.0008 | - |
|
210 |
+
| 0.2963 | 1250 | 0.0009 | - |
|
211 |
+
| 0.3081 | 1300 | 0.0008 | - |
|
212 |
+
| 0.3200 | 1350 | 0.0007 | - |
|
213 |
+
| 0.3318 | 1400 | 0.0007 | - |
|
214 |
+
| 0.3437 | 1450 | 0.0007 | - |
|
215 |
+
| 0.3555 | 1500 | 0.0006 | - |
|
216 |
+
| 0.3674 | 1550 | 0.0007 | - |
|
217 |
+
| 0.3792 | 1600 | 0.0007 | - |
|
218 |
+
| 0.3911 | 1650 | 0.0008 | - |
|
219 |
+
| 0.4029 | 1700 | 0.0006 | - |
|
220 |
+
| 0.4148 | 1750 | 0.0006 | - |
|
221 |
+
| 0.4266 | 1800 | 0.0006 | - |
|
222 |
+
| 0.4385 | 1850 | 0.0006 | - |
|
223 |
+
| 0.4503 | 1900 | 0.0006 | - |
|
224 |
+
| 0.4622 | 1950 | 0.0006 | - |
|
225 |
+
| 0.4740 | 2000 | 0.0006 | - |
|
226 |
+
| 0.4859 | 2050 | 0.0005 | - |
|
227 |
+
| 0.4977 | 2100 | 0.0006 | - |
|
228 |
+
| 0.5096 | 2150 | 0.0006 | - |
|
229 |
+
| 0.5215 | 2200 | 0.0005 | - |
|
230 |
+
| 0.5333 | 2250 | 0.0005 | - |
|
231 |
+
| 0.5452 | 2300 | 0.0005 | - |
|
232 |
+
| 0.5570 | 2350 | 0.0006 | - |
|
233 |
+
| 0.5689 | 2400 | 0.0005 | - |
|
234 |
+
| 0.5807 | 2450 | 0.0005 | - |
|
235 |
+
| 0.5926 | 2500 | 0.0006 | - |
|
236 |
+
| 0.6044 | 2550 | 0.0006 | - |
|
237 |
+
| 0.6163 | 2600 | 0.0005 | - |
|
238 |
+
| 0.6281 | 2650 | 0.0005 | - |
|
239 |
+
| 0.6400 | 2700 | 0.0005 | - |
|
240 |
+
| 0.6518 | 2750 | 0.0005 | - |
|
241 |
+
| 0.6637 | 2800 | 0.0005 | - |
|
242 |
+
| 0.6755 | 2850 | 0.0005 | - |
|
243 |
+
| 0.6874 | 2900 | 0.0005 | - |
|
244 |
+
| 0.6992 | 2950 | 0.0004 | - |
|
245 |
+
| 0.7111 | 3000 | 0.0004 | - |
|
246 |
+
| 0.7229 | 3050 | 0.0004 | - |
|
247 |
+
| 0.7348 | 3100 | 0.0005 | - |
|
248 |
+
| 0.7466 | 3150 | 0.0005 | - |
|
249 |
+
| 0.7585 | 3200 | 0.0005 | - |
|
250 |
+
| 0.7703 | 3250 | 0.0004 | - |
|
251 |
+
| 0.7822 | 3300 | 0.0004 | - |
|
252 |
+
| 0.7940 | 3350 | 0.0004 | - |
|
253 |
+
| 0.8059 | 3400 | 0.0004 | - |
|
254 |
+
| 0.8177 | 3450 | 0.0004 | - |
|
255 |
+
| 0.8296 | 3500 | 0.0004 | - |
|
256 |
+
| 0.8414 | 3550 | 0.0004 | - |
|
257 |
+
| 0.8533 | 3600 | 0.0004 | - |
|
258 |
+
| 0.8651 | 3650 | 0.0004 | - |
|
259 |
+
| 0.8770 | 3700 | 0.0004 | - |
|
260 |
+
| 0.8888 | 3750 | 0.0004 | - |
|
261 |
+
| 0.9007 | 3800 | 0.0004 | - |
|
262 |
+
| 0.9125 | 3850 | 0.0004 | - |
|
263 |
+
| 0.9244 | 3900 | 0.0005 | - |
|
264 |
+
| 0.9362 | 3950 | 0.0004 | - |
|
265 |
+
| 0.9481 | 4000 | 0.0004 | - |
|
266 |
+
| 0.9599 | 4050 | 0.0004 | - |
|
267 |
+
| 0.9718 | 4100 | 0.0004 | - |
|
268 |
+
| 0.9836 | 4150 | 0.0004 | - |
|
269 |
+
| 0.9955 | 4200 | 0.0004 | - |
|
270 |
+
| 0.0000 | 1 | 0.2717 | - |
|
271 |
+
| 0.0013 | 50 | 0.0686 | - |
|
272 |
+
| 0.0026 | 100 | 0.088 | - |
|
273 |
+
| 0.0000 | 1 | 0.1796 | - |
|
274 |
+
| 0.0013 | 50 | 0.0584 | - |
|
275 |
+
| 0.0026 | 100 | 0.1018 | - |
|
276 |
+
| 0.0039 | 150 | 0.128 | - |
|
277 |
+
| 0.0052 | 200 | 0.0761 | - |
|
278 |
+
| 0.0065 | 250 | 0.0216 | - |
|
279 |
+
| 0.0078 | 300 | 0.1652 | - |
|
280 |
+
| 0.0091 | 350 | 0.0384 | - |
|
281 |
+
| 0.0104 | 400 | 0.0062 | - |
|
282 |
+
| 0.0117 | 450 | 0.0442 | - |
|
283 |
+
| 0.0130 | 500 | 0.0452 | - |
|
284 |
+
| 0.0143 | 550 | 0.0081 | - |
|
285 |
+
| 0.0156 | 600 | 0.0205 | - |
|
286 |
+
| 0.0169 | 650 | 0.0125 | - |
|
287 |
+
| 0.0182 | 700 | 0.0012 | - |
|
288 |
+
| 0.0195 | 750 | 0.0011 | - |
|
289 |
+
| 0.0208 | 800 | 0.0315 | - |
|
290 |
+
| 0.0221 | 850 | 0.0009 | - |
|
291 |
+
| 0.0009 | 1 | 0.0006 | - |
|
292 |
+
| 0.0429 | 50 | 0.0008 | - |
|
293 |
+
| 0.0858 | 100 | 0.0005 | - |
|
294 |
+
| 0.1288 | 150 | 0.0015 | - |
|
295 |
+
| 0.1717 | 200 | 0.0013 | - |
|
296 |
+
| 0.2146 | 250 | 0.0237 | - |
|
297 |
+
| 0.2575 | 300 | 0.0304 | - |
|
298 |
+
| 0.3004 | 350 | 0.0005 | - |
|
299 |
+
| 0.3433 | 400 | 0.0013 | - |
|
300 |
+
| 0.3863 | 450 | 0.03 | - |
|
301 |
+
| 0.4292 | 500 | 0.0005 | - |
|
302 |
+
| 0.4721 | 550 | 0.0006 | - |
|
303 |
+
| 0.5150 | 600 | 0.0005 | - |
|
304 |
+
| 0.5579 | 650 | 0.0005 | - |
|
305 |
+
| 0.6009 | 700 | 0.0004 | - |
|
306 |
+
| 0.6438 | 750 | 0.0004 | - |
|
307 |
+
| 0.6867 | 800 | 0.0004 | - |
|
308 |
+
| 0.7296 | 850 | 0.0004 | - |
|
309 |
+
| 0.7725 | 900 | 0.0004 | - |
|
310 |
+
| 0.8155 | 950 | 0.0003 | - |
|
311 |
+
| 0.8584 | 1000 | 0.0004 | - |
|
312 |
+
| 0.9013 | 1050 | 0.0003 | - |
|
313 |
+
| 0.9442 | 1100 | 0.0004 | - |
|
314 |
+
| 0.9871 | 1150 | 0.0003 | - |
|
315 |
+
| 1.0300 | 1200 | 0.0003 | - |
|
316 |
+
| 1.0730 | 1250 | 0.0004 | - |
|
317 |
+
| 1.1159 | 1300 | 0.0003 | - |
|
318 |
+
| 1.1588 | 1350 | 0.0005 | - |
|
319 |
+
| 1.2017 | 1400 | 0.0003 | - |
|
320 |
+
| 1.2446 | 1450 | 0.0003 | - |
|
321 |
+
| 1.2876 | 1500 | 0.0003 | - |
|
322 |
+
| 1.3305 | 1550 | 0.0003 | - |
|
323 |
+
| 1.3734 | 1600 | 0.0003 | - |
|
324 |
+
| 1.4163 | 1650 | 0.0003 | - |
|
325 |
+
| 1.4592 | 1700 | 0.0003 | - |
|
326 |
+
| 1.5021 | 1750 | 0.0005 | - |
|
327 |
+
| 1.5451 | 1800 | 0.0003 | - |
|
328 |
+
| 1.5880 | 1850 | 0.0003 | - |
|
329 |
+
| 1.6309 | 1900 | 0.0003 | - |
|
330 |
+
| 1.6738 | 1950 | 0.0005 | - |
|
331 |
+
| 1.7167 | 2000 | 0.0003 | - |
|
332 |
+
| 1.7597 | 2050 | 0.0007 | - |
|
333 |
+
| 1.8026 | 2100 | 0.0003 | - |
|
334 |
+
| 1.8455 | 2150 | 0.0003 | - |
|
335 |
+
| 1.8884 | 2200 | 0.0003 | - |
|
336 |
+
| 1.9313 | 2250 | 0.0003 | - |
|
337 |
+
| 1.9742 | 2300 | 0.0003 | - |
|
338 |
+
| 2.0172 | 2350 | 0.0003 | - |
|
339 |
+
| 2.0601 | 2400 | 0.0003 | - |
|
340 |
+
| 2.1030 | 2450 | 0.0003 | - |
|
341 |
+
| 2.1459 | 2500 | 0.0003 | - |
|
342 |
+
| 2.1888 | 2550 | 0.0002 | - |
|
343 |
+
| 2.2318 | 2600 | 0.0003 | - |
|
344 |
+
| 2.2747 | 2650 | 0.0004 | - |
|
345 |
+
| 2.3176 | 2700 | 0.0002 | - |
|
346 |
+
| 2.3605 | 2750 | 0.0003 | - |
|
347 |
+
| 2.4034 | 2800 | 0.0002 | - |
|
348 |
+
| 2.4464 | 2850 | 0.0002 | - |
|
349 |
+
| 2.4893 | 2900 | 0.0002 | - |
|
350 |
+
| 2.5322 | 2950 | 0.0002 | - |
|
351 |
+
| 2.5751 | 3000 | 0.0002 | - |
|
352 |
+
| 2.6180 | 3050 | 0.0004 | - |
|
353 |
+
| 2.6609 | 3100 | 0.0004 | - |
|
354 |
+
| 2.7039 | 3150 | 0.0003 | - |
|
355 |
+
| 2.7468 | 3200 | 0.0003 | - |
|
356 |
+
| 2.7897 | 3250 | 0.0003 | - |
|
357 |
+
| 2.8326 | 3300 | 0.0003 | - |
|
358 |
+
| 2.8755 | 3350 | 0.0003 | - |
|
359 |
+
| 2.9185 | 3400 | 0.0003 | - |
|
360 |
+
| 2.9614 | 3450 | 0.0005 | - |
|
361 |
+
|
362 |
+
### Framework Versions
|
363 |
+
- Python: 3.10.12
|
364 |
+
- SetFit: 1.0.3
|
365 |
+
- Sentence Transformers: 2.5.1
|
366 |
+
- Transformers: 4.38.1
|
367 |
+
- PyTorch: 2.1.0+cu121
|
368 |
+
- Datasets: 2.18.0
|
369 |
+
- Tokenizers: 0.15.2
|
370 |
+
|
371 |
+
## Citation
|
372 |
+
|
373 |
+
### BibTeX
|
374 |
+
```bibtex
|
375 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
376 |
+
doi = {10.48550/ARXIV.2209.11055},
|
377 |
+
url = {https://arxiv.org/abs/2209.11055},
|
378 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
379 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
380 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
381 |
+
publisher = {arXiv},
|
382 |
+
year = {2022},
|
383 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
384 |
+
}
|
385 |
+
```
|
386 |
+
|
387 |
+
<!--
|
388 |
+
## Glossary
|
389 |
+
|
390 |
+
*Clearly define terms in order to be accessible across audiences.*
|
391 |
+
-->
|
392 |
+
|
393 |
+
<!--
|
394 |
+
## Model Card Authors
|
395 |
+
|
396 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
397 |
+
-->
|
398 |
+
|
399 |
+
<!--
|
400 |
+
## Model Card Contact
|
401 |
+
|
402 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
403 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.38.1",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"pit",
|
5 |
+
"peak",
|
6 |
+
"neither"
|
7 |
+
]
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:004b5461c619a69bbdbc53de8e41f5c382c82dba86a08f72e6131700042acdd4
|
3 |
+
size 437951328
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9a4836235ea96c64afb77f64de068712bb4003db3b9225c8a65d897ed11f21e
|
3 |
+
size 19327
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|