jamessyx commited on
Commit
70580cb
1 Parent(s): 44c896e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -0
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
4
+ This is the official Hugging Face repo for PathCLIP
5
+
6
+ # Usage
7
+
8
+ ```python
9
+ import torch
10
+ from PIL import Image
11
+
12
+ import open_clip
13
+
14
+ ##load the model
15
+ model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-16', pretrained='/mnt/Xsky/syx/model/clip/exp/ViT-B-16/23_1227_openpath/epoch_10_ori.pt',
16
+ cache_dir='/mnt/Xsky/syx/model/open_clip', force_quick_gelu=True)
17
+ tokenizer = open_clip.get_tokenizer('ViT-B-16')
18
+ model = model.cuda()
19
+
20
+ ##load the image and prepare the text prompt
21
+ img_path = 'your_img_path'
22
+ label_description_list = ['label description1', 'label description3', 'label description3'] # specify the label descriptions
23
+ text_label_list = ['An image of {}'.format(i) for i in label_description_list]
24
+ image = Image.open(img_path)
25
+ image = preprocess(image).unsqueeze(0).cuda()
26
+ text = tokenizer(text_label_list).cuda()
27
+
28
+ ##extract the img and text feature and predict the label
29
+ with torch.no_grad(), torch.cuda.amp.autocast():
30
+ image_features = model.encode_image(image)
31
+ text_features = model.encode_text(text)
32
+ image_features /= image_features.norm(dim=-1, keepdim=True)
33
+ text_features /= text_features.norm(dim=-1, keepdim=True)
34
+ text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
35
+ predict_label = torch.argmax(text_probs).item()
36
+ ```
37
+