nielsr HF staff commited on
Commit
1cde241
·
verified ·
1 Parent(s): 2c0403e

Add inference section

Browse files

This PR adds a code snippet showcasing end-to-end inference.

Files changed (1) hide show
  1. README.md +59 -2
README.md CHANGED
@@ -6,6 +6,7 @@ tags:
6
  - yolov10
7
  datasets:
8
  - detection-datasets/coco
 
9
  ---
10
 
11
  ### Model Description
@@ -16,10 +17,10 @@ datasets:
16
 
17
  ### Installation
18
  ```
19
- pip install supervision git+https://github.com/THU-MIG/yolov10.git
20
  ```
21
 
22
- ### Yolov10 Training/Validation/Prediction
23
  ```python
24
  from ultralytics import YOLOv10
25
 
@@ -36,6 +37,62 @@ model.val(...)
36
  model.predict(...)
37
  ```
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  ### BibTeX Entry and Citation Info
40
  ```
41
  @article{wang2024yolov10,
 
6
  - yolov10
7
  datasets:
8
  - detection-datasets/coco
9
+ inference: false
10
  ---
11
 
12
  ### Model Description
 
17
 
18
  ### Installation
19
  ```
20
+ pip install git+https://github.com/THU-MIG/yolov10.git supervision
21
  ```
22
 
23
+ ### Training/Validation
24
  ```python
25
  from ultralytics import YOLOv10
26
 
 
37
  model.predict(...)
38
  ```
39
 
40
+ ### Inference
41
+
42
+ Here's an end-to-end example showcasing inference on a cats image:
43
+
44
+ ```python
45
+ from ultralytics import YOLOv10
46
+ import supervision as sv
47
+ from PIL import Image
48
+ import requests
49
+
50
+ # load model
51
+ model = YOLOv10.from_pretrained("nielsr/yolov10n")
52
+
53
+ # load image
54
+ url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
55
+ image = Image.open(requests.get(url, stream=True).raw)
56
+ image = np.array(image)
57
+
58
+ # perform inference
59
+ results = model(source=image, conf=0.25, verbose=False)[0]
60
+ detections = sv.Detections.from_ultralytics(results)
61
+ box_annotator = sv.BoxAnnotator()
62
+
63
+ category_dict = {
64
+ 0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
65
+ 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
66
+ 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
67
+ 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
68
+ 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
69
+ 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
70
+ 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
71
+ 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
72
+ 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
73
+ 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
74
+ 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
75
+ 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
76
+ 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
77
+ 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
78
+ 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
79
+ 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
80
+ }
81
+
82
+ labels = [
83
+ f"{category_dict[class_id]} {confidence:.2f}"
84
+ for class_id, confidence in zip(detections.class_id, detections.confidence)
85
+ ]
86
+ annotated_image = box_annotator.annotate(
87
+ image.copy(), detections=detections, labels=labels
88
+ )
89
+
90
+ Image.fromarray(annotated_image)
91
+ ```
92
+ which shows:
93
+
94
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f1158120c833276f61f1a84/N8cV9jam_UsEzexp-W98n.png)
95
+
96
  ### BibTeX Entry and Citation Info
97
  ```
98
  @article{wang2024yolov10,