jamescalam commited on
Commit
cf7db3d
1 Parent(s): c7ce179

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -18
README.md CHANGED
@@ -7,11 +7,11 @@ tags:
7
  - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
15
 
16
  ## Usage (Sentence-Transformers)
17
 
@@ -27,7 +27,7 @@ Then you can use the model like this:
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -70,15 +70,6 @@ print("Sentence embeddings:")
70
  print(sentence_embeddings)
71
  ```
72
 
73
-
74
-
75
- ## Evaluation Results
76
-
77
- <!--- Describe how your model was evaluated -->
78
-
79
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
-
81
-
82
  ## Training
83
  The model was trained with the parameters:
84
 
@@ -119,7 +110,3 @@ SentenceTransformer(
119
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
120
  )
121
  ```
122
-
123
- ## Citing & Authors
124
-
125
- <!--- Describe where people can find more information -->
 
7
  - transformers
8
  ---
9
 
10
+ # Gold-only BERT STSb
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
+ It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/).
15
 
16
  ## Usage (Sentence-Transformers)
17
 
 
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
+ model = SentenceTransformer('bert-stsb-gold')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
 
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('bert-stsb-gold')
57
+ model = AutoModel.from_pretrained('bert-stsb-gold')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
70
  print(sentence_embeddings)
71
  ```
72
 
 
 
 
 
 
 
 
 
 
73
  ## Training
74
  The model was trained with the parameters:
75
 
 
110
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
111
  )
112
  ```