File size: 1,373 Bytes
feb6e2e
 
 
 
 
 
 
 
 
6c6ff88
feb6e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
datasets:
- EleutherAI/pile
language:
- en
---

# DenseRetNet-350M

An unofficial pretraining checkpoints for DenseRetNet-350M of paper DenseMamba: https://arxiv.org/abs/2403.00818, the trainig data is 15B tokens randomly samples from The Pile dataset.



- recurrent generation examples:

```python
import torch
import transformers
model_name_or_path = '/path to model'
MAX_NEW_TOKENS = 256
inference_dtype = torch.float16

generation_config = transformers.GenerationConfig(
    do_sample=False,
    max_new_tokens=MAX_NEW_TOKENS,
)

tokenizer = transformers.AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True)
config = transformers.AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True)  # .cuda()
model.cuda()
model = model.half()
model.eval()
input_sents = 'I have a dream'
inputs = tokenizer(input_sents, return_tensors="pt", truncation=True, max_length=2048)
output = model.generate(input_ids=inputs["input_ids"].cuda(),
                   generation_config=generation_config,
                   return_dict_in_generate=True,
                   output_scores=True
                   )
output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
print(output)
```