a2c-PandaReachDense-v2 / config.json
jakubgajski's picture
Initial commit
f2f0cea
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f202e2b56c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f202e2ae940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684161090436012024, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuji6PgEO/rwK4xE/uji6PgEO/rwK4xE/uji6PgEO/rwK4xE/uji6PgEO/rwK4xE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVVu3PuSgzb95jL8/wtzEP5hjvb8c85M/QeHIPwOfvD/e5KE+ctvKPWpPzLw9L7c+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC6OLo+AQ7+vArjET8ilKA9Cfu8u0gKhD26OLo+AQ7+vArjET8ilKA9Cfu8u0gKhD26OLo+AQ7+vArjET8ilKA9Cfu8u0gKhD26OLo+AQ7+vArjET8ilKA9Cfu8u0gKhD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36371404 -0.03101254 0.5698706 ]\n [ 0.36371404 -0.03101254 0.5698706 ]\n [ 0.36371404 -0.03101254 0.5698706 ]\n [ 0.36371404 -0.03101254 0.5698706 ]]", "desired_goal": "[[ 0.35811868 -1.6064725 1.4964744 ]\n [ 1.537987 -1.4796019 1.1558566 ]\n [ 1.5693742 1.4736027 0.31619924]\n [ 0.09905137 -0.02494021 0.35778227]]", "observation": "[[ 0.36371404 -0.03101254 0.5698706 0.07840754 -0.00576723 0.06447273]\n [ 0.36371404 -0.03101254 0.5698706 0.07840754 -0.00576723 0.06447273]\n [ 0.36371404 -0.03101254 0.5698706 0.07840754 -0.00576723 0.06447273]\n [ 0.36371404 -0.03101254 0.5698706 0.07840754 -0.00576723 0.06447273]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiWeMPZE0lD1AcG8+VO0QvpwLcr0cmMM9EngCPW63YT0qydc96rKavbcK2L2Yg1Q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06855685 0.07236589 0.23382664]\n [-0.14153033 -0.0590931 0.09550497]\n [ 0.03185279 0.05510657 0.10536416]\n [-0.07553656 -0.10548919 0.20753324]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIT+W0p+Qc67+UhpRSlIwBbJRLMowBdJRHQKGfCyckMTh1fZQoaAZoCWgPQwhPzHoxlBPkv5SGlFKUaBVLMmgWR0ChntHiWE9MdX2UKGgGaAloD0MIzo3pCUs85r+UhpRSlGgVSzJoFkdAoZ6pcZ9/jXV9lChoBmgJaA9DCAw+zcmLTMK/lIaUUpRoFUsyaBZHQKGeaYBvJil1fZQoaAZoCWgPQwgpzHucaULxv5SGlFKUaBVLMmgWR0Chn9ucUdq+dX2UKGgGaAloD0MIpyOAm8UL57+UhpRSlGgVSzJoFkdAoZ+ibz9S/HV9lChoBmgJaA9DCPVjk/yIX9e/lIaUUpRoFUsyaBZHQKGfeiKziS91fZQoaAZoCWgPQwg2HQHcLF7Xv5SGlFKUaBVLMmgWR0ChnzoomXw9dX2UKGgGaAloD0MITkUqjC0Ex7+UhpRSlGgVSzJoFkdAoaCoeV9nb3V9lChoBmgJaA9DCJVkHY6u0tG/lIaUUpRoFUsyaBZHQKGgbzkIX0p1fZQoaAZoCWgPQwi8sDVbecnbv5SGlFKUaBVLMmgWR0ChoEa7EpAldX2UKGgGaAloD0MIIXU7+8qD27+UhpRSlGgVSzJoFkdAoaAGuzQeFXV9lChoBmgJaA9DCISEKF/QQua/lIaUUpRoFUsyaBZHQKGhYB0ZFXt1fZQoaAZoCWgPQwhkkLsIU5Tgv5SGlFKUaBVLMmgWR0ChoSbz06HTdX2UKGgGaAloD0MISrTk8bT87L+UhpRSlGgVSzJoFkdAoaD+afBeonV9lChoBmgJaA9DCOymlNdK6NK/lIaUUpRoFUsyaBZHQKGgvkoWpId1fZQoaAZoCWgPQwiA7zZvnBTTv5SGlFKUaBVLMmgWR0ChoiIFFDv3dX2UKGgGaAloD0MIsOO/QBAg07+UhpRSlGgVSzJoFkdAoaHot4A0bnV9lChoBmgJaA9DCJyk+WNam+m/lIaUUpRoFUsyaBZHQKGhwLJCBwx1fZQoaAZoCWgPQwiySBPvAE/nv5SGlFKUaBVLMmgWR0ChoYB7u2JBdX2UKGgGaAloD0MIzZAqilfZ4b+UhpRSlGgVSzJoFkdAoaLjd30PH3V9lChoBmgJaA9DCI4FhUGZRtW/lIaUUpRoFUsyaBZHQKGiqkdmxt51fZQoaAZoCWgPQwh6cHfWbrvpv5SGlFKUaBVLMmgWR0ChooHogV45dX2UKGgGaAloD0MIF6BtNeuM5L+UhpRSlGgVSzJoFkdAoaJBvR7Z4HV9lChoBmgJaA9DCBlXXByVm9m/lIaUUpRoFUsyaBZHQKGjsSamXPZ1fZQoaAZoCWgPQwhNLzGW6ZfZv5SGlFKUaBVLMmgWR0Cho3f0NBnjdX2UKGgGaAloD0MIxJeJIqRu2b+UhpRSlGgVSzJoFkdAoaNPpD/lyXV9lChoBmgJaA9DCJNwIY/gRty/lIaUUpRoFUsyaBZHQKGjD4etCAt1fZQoaAZoCWgPQwjElbN3RlvFv5SGlFKUaBVLMmgWR0ChpHcgpz91dX2UKGgGaAloD0MIMSb9vRQe37+UhpRSlGgVSzJoFkdAoaQ99ph4MXV9lChoBmgJaA9DCA/Tvrm/esK/lIaUUpRoFUsyaBZHQKGkFYTTOPh1fZQoaAZoCWgPQwhQ4nMn2H/gv5SGlFKUaBVLMmgWR0Cho9VU2kzodX2UKGgGaAloD0MIIlFoWfeP17+UhpRSlGgVSzJoFkdAoaU9ZgXuV3V9lChoBmgJaA9DCHY4ukp318O/lIaUUpRoFUsyaBZHQKGlBCyhSLt1fZQoaAZoCWgPQwiWBKipZWvov5SGlFKUaBVLMmgWR0ChpNvTXrdFdX2UKGgGaAloD0MIui9ntiv02L+UhpRSlGgVSzJoFkdAoaSbreIl+nV9lChoBmgJaA9DCCIcs+xJYNq/lIaUUpRoFUsyaBZHQKGl90/W1+l1fZQoaAZoCWgPQwi0A64rZoTQv5SGlFKUaBVLMmgWR0Chpb39zfaYdX2UKGgGaAloD0MIwZDVrZ6T47+UhpRSlGgVSzJoFkdAoaWVn/T9bXV9lChoBmgJaA9DCLPqc7UVe+G/lIaUUpRoFUsyaBZHQKGlVYwIt191fZQoaAZoCWgPQwjus8pMaf3Uv5SGlFKUaBVLMmgWR0ChprdhZyMldX2UKGgGaAloD0MIkDF3LSEfwr+UhpRSlGgVSzJoFkdAoaZ+QCCBgHV9lChoBmgJaA9DCEmERrBx/dW/lIaUUpRoFUsyaBZHQKGmVdAxBVx1fZQoaAZoCWgPQwhATpgwmpXZv5SGlFKUaBVLMmgWR0ChphXU6PsBdX2UKGgGaAloD0MIH2XEBaBR3b+UhpRSlGgVSzJoFkdAoaeBJiAlOXV9lChoBmgJaA9DCFRW0/VEV+C/lIaUUpRoFUsyaBZHQKGnR9sJpnJ1fZQoaAZoCWgPQwj7kLdc/djjv5SGlFKUaBVLMmgWR0Chpx9/J/5MdX2UKGgGaAloD0MI88mK4eoAzr+UhpRSlGgVSzJoFkdAoabffKp1inV9lChoBmgJaA9DCA+AuKtXkdG/lIaUUpRoFUsyaBZHQKGoQan75211fZQoaAZoCWgPQwgF3smnx7bcv5SGlFKUaBVLMmgWR0ChqAhhYvFndX2UKGgGaAloD0MIl8eakUHuwL+UhpRSlGgVSzJoFkdAoaff9Hc1wnV9lChoBmgJaA9DCFSM8zehEN2/lIaUUpRoFUsyaBZHQKGnn9tMwlB1fZQoaAZoCWgPQwjy7zMuHAjVv5SGlFKUaBVLMmgWR0ChqQNy5qdpdX2UKGgGaAloD0MIATJ07KAS27+UhpRSlGgVSzJoFkdAoajKVSn+AHV9lChoBmgJaA9DCOm12ViJeeG/lIaUUpRoFUsyaBZHQKGoohqTKT11fZQoaAZoCWgPQwj9FTJXBtXbv5SGlFKUaBVLMmgWR0ChqGIod+5OdX2UKGgGaAloD0MI8GlOXmQC0b+UhpRSlGgVSzJoFkdAoanbp9qk/XV9lChoBmgJaA9DCDFcHQBx1+K/lIaUUpRoFUsyaBZHQKGponBtUGV1fZQoaAZoCWgPQwiySBPvAE/jv5SGlFKUaBVLMmgWR0ChqXtQj2SMdX2UKGgGaAloD0MI6GhVSzpK47+UhpRSlGgVSzJoFkdAoak7bzshPnV9lChoBmgJaA9DCHcRpiiXxs+/lIaUUpRoFUsyaBZHQKGq6HdoFmp1fZQoaAZoCWgPQwjqBgq8k8/nv5SGlFKUaBVLMmgWR0Chqq+NkvsadX2UKGgGaAloD0MI3A2itaLNxb+UhpRSlGgVSzJoFkdAoaqHmeUY9HV9lChoBmgJaA9DCGiu00hLZeW/lIaUUpRoFUsyaBZHQKGqSBlMAWB1fZQoaAZoCWgPQwjp76XwoNnQv5SGlFKUaBVLMmgWR0ChrBo/iYLLdX2UKGgGaAloD0MIt2PqruyC1L+UhpRSlGgVSzJoFkdAoavheC04R3V9lChoBmgJaA9DCHHiqx3FOc6/lIaUUpRoFUsyaBZHQKGruY2sJY11fZQoaAZoCWgPQwineFxUi4jOv5SGlFKUaBVLMmgWR0Chq3pLVWjodX2UKGgGaAloD0MISMMpc/ONzr+UhpRSlGgVSzJoFkdAoa1LrcCYC3V9lChoBmgJaA9DCGWnH9RFCsG/lIaUUpRoFUsyaBZHQKGtEzKLbYd1fZQoaAZoCWgPQwhAbVSnA1nTv5SGlFKUaBVLMmgWR0ChrOuv2Xb/dX2UKGgGaAloD0MITWa8rfTayr+UhpRSlGgVSzJoFkdAoaysYj0L+nV9lChoBmgJaA9DCCNL5ljeVde/lIaUUpRoFUsyaBZHQKGumsAeaKF1fZQoaAZoCWgPQwijsfZ3tkfWv5SGlFKUaBVLMmgWR0ChrmJSrHU+dX2UKGgGaAloD0MImdU73A4N2b+UhpRSlGgVSzJoFkdAoa46xs2vS3V9lChoBmgJaA9DCJFj6xnCMc+/lIaUUpRoFUsyaBZHQKGt+2OQyRB1fZQoaAZoCWgPQwhuGXCWkuXWv5SGlFKUaBVLMmgWR0Chr/mJm/WUdX2UKGgGaAloD0MIkj6toj803L+UhpRSlGgVSzJoFkdAoa/AuPFNtnV9lChoBmgJaA9DCOnwEMZP49W/lIaUUpRoFUsyaBZHQKGvmQNkOI91fZQoaAZoCWgPQwjgTEwXYvXhv5SGlFKUaBVLMmgWR0Chr1mMXJo1dX2UKGgGaAloD0MIV5V9VwT/0L+UhpRSlGgVSzJoFkdAobFQAU+LWXV9lChoBmgJaA9DCECIZMix9eC/lIaUUpRoFUsyaBZHQKGxFzdUKiR1fZQoaAZoCWgPQwhDc51GWirPv5SGlFKUaBVLMmgWR0ChsO9yT6i1dX2UKGgGaAloD0MIDwwgfCjR2b+UhpRSlGgVSzJoFkdAobCwFJQLu3V9lChoBmgJaA9DCE0uxsA6jte/lIaUUpRoFUsyaBZHQKGyi7YChex1fZQoaAZoCWgPQwhFm+PcJtzPv5SGlFKUaBVLMmgWR0ChslKwQlKLdX2UKGgGaAloD0MIH7+36c9+27+UhpRSlGgVSzJoFkdAobIqNuLrHHV9lChoBmgJaA9DCKcf1EUKZde/lIaUUpRoFUsyaBZHQKGx6jJuEVZ1fZQoaAZoCWgPQwgzw0ZZv5nav5SGlFKUaBVLMmgWR0Chs1HrpqyodX2UKGgGaAloD0MIXp1jQPZ6w7+UhpRSlGgVSzJoFkdAobMYrMC9y3V9lChoBmgJaA9DCFJIMqt3uNW/lIaUUpRoFUsyaBZHQKGy8DDjzZp1fZQoaAZoCWgPQwicxYuFIXLQv5SGlFKUaBVLMmgWR0ChsrAk1MufdX2UKGgGaAloD0MII79+iA0W3L+UhpRSlGgVSzJoFkdAobQfseGO/HV9lChoBmgJaA9DCLYvoBfuXMC/lIaUUpRoFUsyaBZHQKGz5nr6ciJ1fZQoaAZoCWgPQwi+a9CX3v7Wv5SGlFKUaBVLMmgWR0Chs74gq3EydX2UKGgGaAloD0MInWSryykB17+UhpRSlGgVSzJoFkdAobN+PDHfdnV9lChoBmgJaA9DCCPcZFQZxte/lIaUUpRoFUsyaBZHQKG03Y+Sr5t1fZQoaAZoCWgPQwgSE9TwLazQv5SGlFKUaBVLMmgWR0ChtKRBNVR2dX2UKGgGaAloD0MIvY44ZAPpxr+UhpRSlGgVSzJoFkdAobR7zND+i3V9lChoBmgJaA9DCIKsp1ZfXeC/lIaUUpRoFUsyaBZHQKG0O73fygB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}