File size: 2,227 Bytes
3e161a1 2d0e1da 3e161a1 7641546 2d0e1da 3e161a1 f719e18 3e161a1 2d0e1da 3e161a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
base_model: ml6team/keyphrase-extraction-distilbert-inspec
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: keyphrase-extraction-distilbert-inspec-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# keyphrase-extraction-distilbert-inspec-finetuned-ner
This model is a fine-tuned version of [ml6team/keyphrase-extraction-distilbert-inspec](https://huggingface.co/ml6team/keyphrase-extraction-distilbert-inspec) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7236
- Precision: 0.7952
- Recall: 0.8590
- F1: 0.8259
- Accuracy: 0.7952
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.15 | 10 | 0.7251 | 0.7952 | 0.8590 | 0.8259 | 0.7952 |
| No log | 0.3 | 20 | 0.7239 | 0.7952 | 0.8590 | 0.8259 | 0.7952 |
| No log | 0.45 | 30 | 0.7239 | 0.7952 | 0.8590 | 0.8259 | 0.7952 |
| No log | 0.6 | 40 | 0.7236 | 0.7952 | 0.8590 | 0.8259 | 0.7952 |
| No log | 0.75 | 50 | 0.7241 | 0.7952 | 0.8590 | 0.8259 | 0.7952 |
| No log | 0.9 | 60 | 0.7238 | 0.7952 | 0.8590 | 0.8259 | 0.7952 |
| No log | 1.04 | 70 | 0.7241 | 0.7952 | 0.8590 | 0.8259 | 0.7952 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
|