|
|
|
import copy |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model, SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel |
|
from abc import ABC, abstractmethod |
|
import torch.nn as nn |
|
|
|
|
|
class ProcessorWrapper: |
|
def __init__( |
|
self, |
|
transform, |
|
height=378, |
|
width=378, |
|
image_mean=[0.48145466, 0.4578275, 0.40821073], |
|
): |
|
self._crop_size = { |
|
"height": height, |
|
"width": width, |
|
} |
|
self._transforms = transform |
|
|
|
self.image_mean = image_mean |
|
|
|
@property |
|
def crop_size(self): |
|
return self._crop_size |
|
|
|
def preprocess(self, image, return_tensors="pt"): |
|
|
|
output = {} |
|
output["pixel_values"] = [self._transforms(image)] |
|
return output |
|
|
|
|
|
class BaseVisionTower(nn.Module): |
|
def __init__(self, vision_tower_name, args, delay_load=False): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
self.args = args |
|
|
|
self.vision_tower_name = vision_tower_name |
|
self.select_layer = args.mm_vision_select_layer |
|
self.select_feature = getattr(args, "mm_vision_select_feature", "patch") |
|
self.unfreeze_mm_vision_tower = getattr(args, "unfreeze_mm_vision_tower", False) |
|
self.delay_load = delay_load |
|
|
|
@abstractmethod |
|
def load_model(self, device_map=None): |
|
raise NotImplementedError("Subclasses must implement load_model") |
|
|
|
@abstractmethod |
|
def _forward(self, images): |
|
raise NotImplementedError("Subclasses must implement forward") |
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [self._forward(image.unsqueeze(0)) for image in images] |
|
else: |
|
image_features = self._forward(images) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
|
|
if hasattr(self.vision_tower, "dtype"): |
|
return self.vision_tower.dtype |
|
else: |
|
params = list(self.vision_tower.parameters()) |
|
return ( |
|
params[0].dtype if len(params) > 0 else torch.float32 |
|
) |
|
|
|
@property |
|
def device(self): |
|
|
|
if hasattr(self.vision_tower, "device"): |
|
return self.vision_tower.device |
|
else: |
|
params = list(self.vision_tower.parameters()) |
|
return ( |
|
params[0].device if len(params) > 0 else torch.device("cpu") |
|
) |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
try: |
|
return self.config.hidden_size |
|
except: |
|
return self._hidden_size |
|
|
|
@property |
|
def image_size(self): |
|
|
|
try: |
|
return self.config.image_size |
|
except: |
|
return self._image_size |
|
|
|
@property |
|
def patch_size(self): |
|
|
|
try: |
|
return self.config.patch_size |
|
except: |
|
return self._patch_size |
|
|
|
@property |
|
def num_patches_per_side(self): |
|
if self._interp_size is not None: |
|
return int(self._interp_size**0.5) |
|
try: |
|
return self.image_size // self.patch_size |
|
except: |
|
return self._num_patches_per_side |
|
|
|
@property |
|
def num_patches(self): |
|
if self._interp_size is not None: |
|
return self._interp_size |
|
try: |
|
return self.num_patches_per_side**2 |
|
except: |
|
return self._num_patches |
|
|
|
|
|
class DinoVisionTower(BaseVisionTower): |
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super(DinoVisionTower, self).__init__(vision_tower, args, delay_load) |
|
|
|
model_path = "facebook/dinov2-giant" |
|
base_model_name, res, interp = model_path, 378, 576 |
|
self._vision_tower_name = vision_tower |
|
self.vision_tower_name = base_model_name |
|
self._image_size = res |
|
self._interp_size = interp |
|
self._patch_size = 14 |
|
|
|
if not self.delay_load: |
|
self.load_model() |
|
else: |
|
self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name) |
|
|
|
def load_model(self, device_map=None): |
|
|
|
self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name) |
|
"""ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute.""" |
|
self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"] |
|
|
|
_image_size = self.vision_tower.config.image_size |
|
if self._image_size is None: |
|
self._image_size = _image_size |
|
|
|
|
|
default_shortest_ratio = 8 / 7 |
|
|
|
shortest_edge = self._image_size |
|
|
|
processor = AutoImageProcessor.from_pretrained( |
|
self.vision_tower_name, |
|
crop_size=dict(height=self._image_size, width=self._image_size), |
|
size=dict(shortest_edge=shortest_edge), |
|
) |
|
self.image_processor = processor |
|
|
|
|
|
self._hidden_size = ( |
|
self.vision_tower.embeddings.patch_embeddings.projection.out_channels |
|
) |
|
|
|
self._patch_size = ( |
|
self.vision_tower.embeddings.patch_embeddings.projection.stride[0] |
|
) |
|
|
|
|
|
|
|
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower) |
|
self.is_loaded = True |
|
|
|
@property |
|
def image_size(self): |
|
return self._image_size |
|
|
|
def feature_select(self, outputs): |
|
sequence_output = outputs[ |
|
"last_hidden_state" |
|
] |
|
|
|
if self.select_feature == "cls_patch": |
|
image_features = sequence_output |
|
elif self.select_feature == "patch": |
|
image_features = sequence_output[:, 1:] |
|
elif self.select_feature == "cls": |
|
image_features = sequence_output[:, 0] |
|
else: |
|
raise ValueError(f"Unexpected select feature: {self.select_feature}") |
|
return image_features |
|
|
|
def interpolate(self, image_features): |
|
if self._interp_size is None: |
|
return image_features |
|
|
|
b, num_tokens, dim = image_features.shape |
|
|
|
if num_tokens != self.num_patches: |
|
target_h = target_w = int(self._interp_size**0.5) |
|
h = w = int(num_tokens**0.5) |
|
|
|
image_features = image_features.view(b, h, w, dim) |
|
image_features = image_features.permute(0, 3, 1, 2).contiguous() |
|
|
|
image_features = F.interpolate( |
|
image_features.to(torch.float32), |
|
size=(target_h, target_w), |
|
mode="bilinear", |
|
align_corners=False, |
|
).to(image_features.dtype) |
|
|
|
|
|
image_features = image_features.permute(0, 2, 3, 1).contiguous() |
|
|
|
|
|
image_features = image_features.flatten(1, 2) |
|
|
|
return image_features |
|
|
|
def _forward(self, images): |
|
|
|
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower): |
|
image_forward_outs = self.vision_tower.forward( |
|
images.to(device=self.device, dtype=self.dtype) |
|
) |
|
|
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
interp_features = self.interpolate(image_features) |
|
|
|
return interp_features |
|
|
|
@property |
|
def num_patches_per_side(self): |
|
return int(self.num_patches**0.5) |
|
|
|
@property |
|
def num_patches(self): |
|
if self._interp_size is None: |
|
return (self._image_size // self._patch_size) ** 2 |
|
else: |
|
return self._interp_size |
|
|
|
|
|
|
|
class SiglipVisionTower(BaseVisionTower): |
|
def __init__(self, vision_tower_name, args, delay_load=False): |
|
super(SiglipVisionTower, self).__init__(vision_tower_name, args, delay_load) |
|
|
|
model_path = "google/siglip-so400m-patch14-384" |
|
base_model_name, res, interp = model_path, 384, 576 |
|
self.vision_tower_name = base_model_name |
|
self._image_size = res if res is not None else 512 |
|
self._interp_size = interp |
|
if not self.delay_load: |
|
self.load_model() |
|
elif self.unfreeze_mm_vision_tower: |
|
self.load_model() |
|
else: |
|
self._hidden_size = 1152 |
|
|
|
def load_model(self, device_map=None): |
|
self.vision_model = "siglip" |
|
|
|
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) |
|
|
|
|
|
self.vision_tower.output_tokens = True |
|
|
|
self._hidden_size = self.vision_tower.config.hidden_size |
|
self._image_size = self.vision_tower.config.image_size |
|
self._patch_size = self.vision_tower.config.patch_size |
|
self.image_processor = SiglipImageProcessor.from_pretrained( |
|
self.vision_tower_name |
|
) |
|
|
|
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower) |
|
self.is_loaded = True |
|
|
|
def interpolate(self, image_features): |
|
if self._interp_size is None: |
|
return image_features |
|
|
|
b, num_tokens, dim = image_features.shape |
|
|
|
if num_tokens != self.num_patches: |
|
target_h = target_w = int(self._interp_size**0.5) |
|
h = w = int(num_tokens**0.5) |
|
|
|
image_features = image_features.view(b, h, w, dim) |
|
image_features = image_features.permute(0, 3, 1, 2).contiguous() |
|
|
|
image_features = F.interpolate( |
|
image_features.to(torch.float32), |
|
size=(target_h, target_w), |
|
mode="bilinear", |
|
align_corners=False, |
|
).to(image_features.dtype) |
|
|
|
|
|
image_features = image_features.permute(0, 2, 3, 1).contiguous() |
|
|
|
|
|
image_features = image_features.flatten(1, 2) |
|
|
|
return image_features |
|
|
|
def _forward(self, images, interpolate_token=576): |
|
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower): |
|
image_features = self.vision_tower.forward( |
|
images.to(device=self.device, dtype=self.dtype), |
|
output_hidden_states=True, |
|
).hidden_states[-1] |
|
interp_features = self.interpolate(image_features) |
|
return interp_features |
|
|
|
|
|
def build_vision_tower_aux_list(vision_tower_cfg, **kwargs): |
|
vision_tower_aux_name_list = getattr( |
|
vision_tower_cfg, |
|
"mm_vision_tower_aux_list", |
|
getattr(vision_tower_cfg, "vision_tower_aux_list", None), |
|
) |
|
vision_tower_aux_token_len_list = getattr( |
|
vision_tower_cfg, |
|
"mm_vision_tower_aux_token_len_list", |
|
getattr(vision_tower_cfg, "vision_tower_aux_token_len_list", None), |
|
) |
|
vision_tower_aux_list = [] |
|
for vision_tower_aux_name, vision_tower_aux_token_len in zip( |
|
vision_tower_aux_name_list, vision_tower_aux_token_len_list |
|
): |
|
config = copy.deepcopy(vision_tower_cfg) |
|
vision_tower_aux_name += "-interp{}".format(vision_tower_aux_token_len) |
|
if "siglip" in vision_tower_aux_name.lower(): |
|
vision_tower_aux_list.append( |
|
SiglipVisionTower(vision_tower_aux_name, args=config, **kwargs) |
|
) |
|
|
|
|
|
elif "dinov2" in vision_tower_aux_name.lower(): |
|
vision_tower_aux_list.append( |
|
DinoVisionTower(vision_tower_aux_name, args=config, **kwargs) |
|
) |
|
else: |
|
raise ValueError(f"Unknown vision tower: {vision_tower_aux_name}") |
|
return vision_tower_aux_list |