jadechoghari commited on
Commit
2a10b73
1 Parent(s): 89f21fc

Create ferret_arch.py

Browse files
Files changed (1) hide show
  1. ferret_arch.py +928 -0
ferret_arch.py ADDED
@@ -0,0 +1,928 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from abc import ABC, abstractmethod
17
+ import math
18
+
19
+
20
+ import torch
21
+ import torch.nn as nn
22
+ import torch.nn.functional as F
23
+ import torch.distributed as dist
24
+
25
+ from .multimodal_encoder.builder import build_vision_tower
26
+ from .multimodal_projector.builder import build_vision_projector
27
+
28
+ #This has been modified for hf implementation
29
+ from .constants import (IGNORE_INDEX, IMAGE_TOKEN_INDEX,
30
+ DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN,
31
+ DEFAULT_IM_END_TOKEN, DEFAULT_REGION_FEA_TOKEN)
32
+
33
+ #This has been modified for hf implementation
34
+ from .mm_utils import get_anyres_image_grid_shape
35
+
36
+ import os
37
+
38
+ def rand_sample(x, max_len):
39
+ if x.shape[0] <= max_len:
40
+ return x
41
+ else:
42
+ rand_idx = torch.randperm(x.shape[0])[:max_len]
43
+ return x[rand_idx, :]
44
+
45
+
46
+ def rand_sample_repeat(x, max_len):
47
+ if x.shape[0] < max_len:
48
+ indices = torch.randint(0, x.shape[0], (max_len-x.shape[0],))
49
+ # pdb.set_trace()
50
+ return torch.cat((x, x[indices]), dim=0)
51
+ elif x.shape[0] == max_len:
52
+ return x
53
+ else:
54
+ rand_idx = torch.randperm(x.shape[0])[:max_len]
55
+ return x[rand_idx, :]
56
+
57
+
58
+ def point_sample(input, point_coords, return_dtype, **kwargs):
59
+ """
60
+ A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors.
61
+ Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside
62
+ [0, 1] x [0, 1] square.
63
+ Args:
64
+ input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid.
65
+ point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains
66
+ [0, 1] x [0, 1] normalized point coordinates.
67
+ Returns:
68
+ output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains
69
+ features for points in `point_coords`. The features are obtained via bilinear
70
+ interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`.
71
+ """
72
+ add_dim = False
73
+ if point_coords.dim() == 3:
74
+ add_dim = True
75
+ point_coords = point_coords.unsqueeze(2)
76
+ # output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs)
77
+ output = F.grid_sample(input.float(), (2.0 * point_coords - 1.0).float(), **kwargs)
78
+ output = output.to(return_dtype)
79
+ if add_dim:
80
+ output = output.squeeze(3)
81
+ return output
82
+
83
+
84
+ def farthest_point_sample(xyz, npoint):
85
+ """
86
+ Input:
87
+ xyz: pointcloud data, [B, N, 2]
88
+ npoint: number of samples
89
+ Return:
90
+ centroids: sampled pointcloud index, [B, npoint]
91
+ """
92
+ device = xyz.device
93
+ B, N, C = xyz.shape
94
+ centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
95
+ distance = torch.ones(B, N).to(device) * 1e10
96
+ farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
97
+ batch_indices = torch.arange(B, dtype=torch.long).to(device)
98
+ for i in range(npoint):
99
+ centroids[:, i] = farthest
100
+ centroid = xyz[batch_indices, farthest, :].view(B, 1, 2)
101
+ dist = torch.sum((xyz - centroid) ** 2, -1)
102
+ distance = torch.min(distance, dist)
103
+ farthest = torch.max(distance, -1)[1]
104
+ return centroids
105
+
106
+
107
+ def index_points(points, idx):
108
+ """
109
+ Input:
110
+ points: input points data, [B, N, C]
111
+ idx: sample index data, [B, S]
112
+ Return:
113
+ new_points:, indexed points data, [B, S, C]
114
+ """
115
+ device = points.device
116
+ B = points.shape[0]
117
+ view_shape = list(idx.shape)
118
+ view_shape[1:] = [1] * (len(view_shape) - 1)
119
+ repeat_shape = list(idx.shape)
120
+ repeat_shape[0] = 1
121
+ batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
122
+ new_points = points[batch_indices, idx, :]
123
+ return new_points
124
+
125
+
126
+ def square_distance(src, dst):
127
+ """
128
+ Calculate Euclid distance between each two points.
129
+ src^T * dst = xn * xm + yn * ym + zn * zm;
130
+ sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
131
+ sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
132
+ dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
133
+ = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
134
+ Input:
135
+ src: source points, [B, N, C]
136
+ dst: target points, [B, M, C]
137
+ Output:
138
+ dist: per-point square distance, [B, N, M]
139
+ """
140
+ B, N, _ = src.shape
141
+ _, M, _ = dst.shape
142
+ dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
143
+ dist += torch.sum(src ** 2, -1).view(B, N, 1)
144
+ dist += torch.sum(dst ** 2, -1).view(B, 1, M)
145
+ return dist
146
+
147
+
148
+ def knn_point(nsample, xyz, new_xyz):
149
+ """
150
+ Input:
151
+ nsample: max sample number in local region
152
+ xyz: all points, [B, N, C]
153
+ new_xyz: query points, [B, S, C]
154
+ Return:
155
+ group_idx: grouped points index, [B, S, nsample]
156
+ """
157
+ sqrdists = square_distance(new_xyz, xyz)
158
+ _, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
159
+ return group_idx
160
+
161
+
162
+ class ConvReLULN1D(nn.Module):
163
+ def __init__(self, in_channels, out_channels, kernel_size=1, bias=True):
164
+ super(ConvReLULN1D, self).__init__()
165
+ self.act = nn.ReLU(inplace=True)
166
+ self.net = nn.Sequential(
167
+ nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias),
168
+ self.act
169
+ )
170
+ self.norm = nn.LayerNorm(out_channels)
171
+
172
+ def forward(self, x):
173
+ # (B, C, N) -> (B, C_1, N)
174
+ x = self.net(x)
175
+ x = x.permute(0, 2, 1)
176
+ x = self.norm(x)
177
+ x = x.permute(0, 2, 1)
178
+
179
+ return x
180
+
181
+
182
+ def normal_init(module, mean=0, std=1, bias=0):
183
+ if hasattr(module, 'weight') and module.weight is not None:
184
+ nn.init.normal_(module.weight, mean, std)
185
+ if hasattr(module, 'bias') and module.bias is not None:
186
+ nn.init.constant_(module.bias, bias)
187
+
188
+
189
+ class GeoRegionSampler(nn.Module):
190
+ def __init__(self,
191
+ input_dim,
192
+ output_dim,
193
+ num_init_point,
194
+ num_sub_point,
195
+ num_neighbor,
196
+ pooler_mode='mean'):
197
+ super(GeoRegionSampler, self).__init__()
198
+ self.input_dim = input_dim
199
+ self.output_dim = output_dim
200
+ self.num_init_point = num_init_point
201
+ self.num_sub_point = num_sub_point
202
+ self.num_neighbor = num_neighbor
203
+
204
+ self.diff_projector_list = nn.ModuleList()
205
+ self.agg_projector_list = nn.ModuleList()
206
+ self.pooler_list = nn.ModuleList()
207
+
208
+ for ii in range(len(num_sub_point)):
209
+ self.diff_projector_list.append(nn.Linear(self.input_dim + 2, self.input_dim + 2))
210
+ self.agg_projector_list.append(ConvReLULN1D(in_channels=2*(self.input_dim + 2),
211
+ out_channels=self.input_dim,
212
+ ))
213
+ if pooler_mode == 'mean':
214
+ self.pooler_list.append(nn.AvgPool1d(kernel_size=num_neighbor[ii]))
215
+ elif pooler_mode =='max':
216
+ self.pooler_list.append(nn.AdaptiveMaxPool1d(output_size=1))
217
+ else:
218
+ raise NotImplementedError(f'{self.pooler_mode} is not supported.')
219
+
220
+ self.flatten_projector = nn.Linear(self.input_dim * num_sub_point[-1], self.input_dim)
221
+ self.dim_projector = nn.Linear(self.input_dim, self.output_dim)
222
+ # self.dim_projector = nn.Sequential(*[
223
+ # nn.Linear(self.input_dim, self.output_dim),
224
+ # nn.GELU(),
225
+ # nn.Linear(self.output_dim, self.output_dim)
226
+ # ])
227
+
228
+ self.norm_init_weights()
229
+
230
+ # self.dtype = torch.float32
231
+ def norm_init_weights(self):
232
+ for m in self.modules():
233
+ if isinstance(m, nn.Conv2d):
234
+ normal_init(m, 0, 0.01)
235
+
236
+
237
+ def forward(self,
238
+ feature_map,
239
+ region_masks,
240
+ original_dtype,
241
+ return_dtype):
242
+
243
+ assert len(feature_map) == len(region_masks)
244
+
245
+ all_points = []
246
+ all_points_fea = []
247
+ all_points_img_ids = []
248
+
249
+ # Sample points and their features
250
+ for img_idx, (region_feature_map_i, region_masks_list_i) in enumerate(zip(feature_map, region_masks)):
251
+ if len(region_masks_list_i) != 0:
252
+ # (w, h)
253
+ ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,]
254
+ # list of elements of shape [num_sample_point, 2]
255
+ cur_non_zero_pos = [rand_sample_repeat((m.nonzero()/ori_image_wh), self.num_init_point) for m in region_masks_list_i]
256
+ # list -> [num_mask, num_sample_point, 2]
257
+ cur_non_zero_pos = torch.stack(cur_non_zero_pos)
258
+ # [HxW, C] -> [H, W, C] -> [C, H, W] -> [N, C, H, W]
259
+ if region_feature_map_i.ndim == 2:
260
+ h = w = int(math.sqrt(region_feature_map_i.shape[0]))
261
+ c = region_feature_map_i.shape[-1]
262
+ region_feature_map_i = region_feature_map_i.reshape(h, w, c)
263
+ else:
264
+ assert region_feature_map_i.ndim == 3
265
+ dup_region_feature_map_i = region_feature_map_i.permute(2, 0, 1)
266
+ dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(cur_non_zero_pos.shape[0], 1, 1, 1)
267
+ # [num_mask, C, H, W] x [num_mask, num_sample_point, 2] -> [num_mask, C, num_sample_point] -> [num_mask, num_sample_point, C]
268
+ # F.grid_sample doesn't support BF16. Need to tranform into float32 then transform back.
269
+ dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype)
270
+ region_feature_i = point_sample(dup_region_feature_map_i_ori_type,
271
+ cur_non_zero_pos.flip(dims=(2,)).type(original_dtype),
272
+ return_dtype,
273
+ align_corners=True,
274
+ )
275
+ # region_feature_i = region_feature_i.to(dup_region_feature_map_i.dtype)
276
+ region_feature_i = region_feature_i.transpose(-2, -1)
277
+
278
+ cur_img_ids = [img_idx] * len(cur_non_zero_pos)
279
+ # save to global list
280
+ all_points.append(cur_non_zero_pos)
281
+ all_points_fea.append(region_feature_i)
282
+ all_points_img_ids.extend(cur_img_ids)
283
+
284
+ # No region found, return list of None.
285
+ if len(all_points) == 0:
286
+ return [None] * len(region_masks)
287
+
288
+ all_points = torch.cat(all_points, dim=0).to(return_dtype) # [B*num_mask, num_sample_point, 2]
289
+ all_points_fea = torch.cat(all_points_fea, dim=0) # [B*num_mask, num_sample_point, C]
290
+ all_points_img_ids = torch.tensor(all_points_img_ids, device=all_points_fea.device)
291
+
292
+ assert all_points_fea.shape[:-1] == all_points_fea.shape[:-1]
293
+
294
+ # Processing.
295
+ for stage_i in range(len(self.num_sub_point)):
296
+ cur_num_sub_point = self.num_sub_point[stage_i]
297
+ cur_num_neighbor = self.num_neighbor[stage_i]
298
+
299
+ all_points = all_points.contiguous() # xy [btach, points, xy]
300
+ fps_idx = farthest_point_sample(all_points, cur_num_sub_point).long()
301
+
302
+ new_points = index_points(all_points, fps_idx) # [B, npoint, 2]
303
+ new_points_fea = index_points(all_points_fea, fps_idx) # [B, npoint, d]
304
+
305
+ idx = knn_point(cur_num_neighbor, all_points, new_points)
306
+ grouped_points = index_points(all_points, idx) # [B, npoint, k, 2]
307
+ grouped_points_fea = index_points(all_points_fea, idx) # [B, npoint, k, d]
308
+
309
+ local_points_fea = torch.cat([grouped_points_fea, grouped_points],dim=-1) # [B, npoint, k, d+2]
310
+ anchor_points_fea = torch.cat([new_points_fea, new_points],dim=-1).unsqueeze(-2)
311
+ diff_points_fea = local_points_fea-anchor_points_fea
312
+
313
+ diff_points_fea = self.diff_projector_list[stage_i](diff_points_fea)
314
+ gather_points_fea = torch.cat([diff_points_fea, anchor_points_fea.repeat(1, 1, cur_num_neighbor, 1)], dim=-1) # [B, npoint, k, 2(d+2)]
315
+
316
+ b, n, s, d = gather_points_fea.size()
317
+ gather_points_fea = gather_points_fea.permute(0, 1, 3, 2) # [B, npoint, 2(d+2), k]
318
+ gather_points_fea = gather_points_fea.reshape(-1, d, s) # [B*npoint, 2(d+2), k]
319
+ gather_points_fea = self.agg_projector_list[stage_i](gather_points_fea) # [B*npoint, d, k]
320
+
321
+ batch_size, new_dim, _ = gather_points_fea.size()
322
+ gather_points_fea = self.pooler_list[stage_i](gather_points_fea).view(batch_size, new_dim) # [B*npoint, d]
323
+
324
+ gather_points_fea = gather_points_fea.reshape(b, n, -1) # [B, npoint, d]
325
+
326
+ all_points = new_points
327
+ all_points_fea = gather_points_fea
328
+
329
+ x = all_points_fea.flatten(1, -1) # [B, npoint x d]
330
+ x = self.flatten_projector(x)
331
+ all_region_fea = self.dim_projector(x) # [B, d]
332
+
333
+ output_region_fea = []
334
+ for img_idx in range(len(region_masks)):
335
+ cur_mask = all_points_img_ids == img_idx
336
+
337
+ if not cur_mask.any():
338
+ output_region_fea.append(None)
339
+ else:
340
+ output_region_fea.append(all_region_fea[cur_mask])
341
+
342
+ return output_region_fea
343
+
344
+
345
+ class FerretMetaModel:
346
+
347
+ def __init__(self, config):
348
+ super(FerretMetaModel, self).__init__(config)
349
+ self.max_sample_point = 512
350
+ if hasattr(config, "mm_vision_tower"):
351
+ self.vision_tower = build_vision_tower(config, delay_load=True)
352
+ self.mm_projector = build_vision_projector(config)
353
+
354
+ if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
355
+ self.image_newline = nn.Parameter(
356
+ torch.empty(config.hidden_size, dtype=self.dtype)
357
+ )
358
+
359
+ if hasattr(config, "region_fea_adapter"):
360
+ self.region_fea_adapter = nn.Linear(config.mm_hidden_size, config.hidden_size)
361
+
362
+ if hasattr(config, "region_geo_sampler"):
363
+ if getattr(config, 'mm_patch_merge_type', 'flat').startswith('spatial'):
364
+ self.region_geo_sampler = GeoRegionSampler(input_dim=config.mm_hidden_size,
365
+ output_dim=config.hidden_size,
366
+ num_init_point=self.max_sample_point,
367
+ num_sub_point=[128, 32],
368
+ num_neighbor=[24, 24],
369
+ pooler_mode=config.sampler_pooler_mode
370
+ )
371
+ else:
372
+ self.region_geo_sampler = GeoRegionSampler(input_dim=config.mm_hidden_size,
373
+ output_dim=config.hidden_size,
374
+ num_init_point=self.max_sample_point,
375
+ num_sub_point=[128, 32],
376
+ num_neighbor=[24, 24],
377
+ pooler_mode=config.sampler_pooler_mode
378
+ )
379
+
380
+ def get_vision_tower(self):
381
+ vision_tower = getattr(self, 'vision_tower', None)
382
+ if type(vision_tower) is list:
383
+ vision_tower = vision_tower[0]
384
+ return vision_tower
385
+
386
+ def initialize_vision_modules(self, model_args, fsdp=None,
387
+ add_region_feature=False,
388
+ region_geo_sampler=False,
389
+ sampler_pooler_mode='mean',
390
+ ):
391
+ vision_tower = model_args.vision_tower
392
+ mm_vision_select_layer = model_args.mm_vision_select_layer
393
+ mm_vision_select_feature = model_args.mm_vision_select_feature
394
+ pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
395
+ mm_patch_merge_type = model_args.mm_patch_merge_type
396
+
397
+ self.config.mm_vision_tower = vision_tower
398
+
399
+ if self.get_vision_tower() is None:
400
+ vision_tower = build_vision_tower(model_args)
401
+
402
+ if fsdp is not None and len(fsdp) > 0:
403
+ self.vision_tower = [vision_tower]
404
+ else:
405
+ self.vision_tower = vision_tower
406
+ else:
407
+ if fsdp is not None and len(fsdp) > 0:
408
+ vision_tower = self.vision_tower[0]
409
+ else:
410
+ vision_tower = self.vision_tower
411
+ vision_tower.load_model()
412
+
413
+ self.config.use_mm_proj = True
414
+ self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
415
+ self.config.mm_hidden_size = vision_tower.hidden_size
416
+ self.config.mm_vision_select_layer = mm_vision_select_layer
417
+ self.config.mm_vision_select_feature = mm_vision_select_feature
418
+ self.config.mm_patch_merge_type = mm_patch_merge_type
419
+
420
+ if getattr(self, 'mm_projector', None) is None:
421
+ self.mm_projector = build_vision_projector(self.config)
422
+
423
+ if 'unpad' in mm_patch_merge_type:
424
+ embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
425
+ self.image_newline = nn.Parameter(
426
+ torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
427
+ )
428
+
429
+ if add_region_feature:
430
+ if region_geo_sampler:
431
+ self.config.region_geo_sampler = True
432
+ self.config.sampler_pooler_mode = sampler_pooler_mode
433
+
434
+ if not hasattr(self, 'region_geo_sampler'):
435
+ if mm_patch_merge_type.startswith('spatial'):
436
+ # === if feature is concated ===
437
+ # self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size * 2,
438
+ # output_dim=self.config.hidden_size,
439
+ # num_init_point=self.max_sample_point,
440
+ # num_sub_point=[128, 32],
441
+ # num_neighbor=[24, 24],
442
+ # pooler_mode=sampler_pooler_mode
443
+ # )
444
+ # === if feature is added ===
445
+ self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size,
446
+ output_dim=self.config.hidden_size,
447
+ num_init_point=self.max_sample_point,
448
+ num_sub_point=[128, 32],
449
+ num_neighbor=[24, 24],
450
+ pooler_mode=sampler_pooler_mode
451
+ )
452
+ else:
453
+ self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size,
454
+ output_dim=self.config.hidden_size,
455
+ num_init_point=self.max_sample_point,
456
+ num_sub_point=[128, 32],
457
+ num_neighbor=[24, 24],
458
+ pooler_mode=sampler_pooler_mode
459
+ )
460
+ else:
461
+ self.config.region_fea_adapter = True
462
+ if not hasattr(self, 'region_fea_adapter'):
463
+ self.region_fea_adapter = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)
464
+
465
+ else:
466
+ # In case it is frozen by LoRA
467
+ for p in self.mm_projector.parameters():
468
+ p.requires_grad = True
469
+
470
+ # print(f"pretrain mm mlp adapter: {type(pretrain_mm_mlp_adapter)}") # String
471
+ if pretrain_mm_mlp_adapter is not None and pretrain_mm_mlp_adapter != "None":
472
+ mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
473
+ def get_w(weights, keyword):
474
+ return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
475
+
476
+ self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
477
+
478
+
479
+ def unpad_image(tensor, original_size):
480
+ """
481
+ Unpads a PyTorch tensor of a padded and resized image.
482
+
483
+ Args:
484
+ tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
485
+ original_size (tuple): The original size of PIL image (width, height).
486
+
487
+ Returns:
488
+ torch.Tensor: The unpadded image tensor.
489
+ """
490
+ original_width, original_height = original_size
491
+ current_height, current_width = tensor.shape[1:]
492
+
493
+ original_aspect_ratio = original_width / original_height
494
+ current_aspect_ratio = current_width / current_height
495
+
496
+ if original_aspect_ratio > current_aspect_ratio:
497
+ scale_factor = current_width / original_width
498
+ new_height = int(original_height * scale_factor)
499
+ padding = (current_height - new_height) // 2
500
+ unpadded_tensor = tensor[:, padding:current_height - padding, :]
501
+ else:
502
+ scale_factor = current_height / original_height
503
+ new_width = int(original_width * scale_factor)
504
+ padding = (current_width - new_width) // 2
505
+ unpadded_tensor = tensor[:, :, padding:current_width - padding]
506
+
507
+ return unpadded_tensor
508
+
509
+
510
+ class FerretMetaForCausalLM(ABC):
511
+
512
+ @abstractmethod
513
+ def get_model(self):
514
+ pass
515
+
516
+ def get_vision_tower(self):
517
+ return self.get_model().get_vision_tower()
518
+
519
+ def encode_images(self, images, region_flag=False, region_geo_sampler=False):
520
+ image_features = self.get_model().get_vision_tower()(images)
521
+ projected_image_features = self.get_model().mm_projector(image_features)
522
+ if region_flag:
523
+ if region_geo_sampler:
524
+ new_region_feature_map = image_features
525
+ else:
526
+ new_region_feature_map = self.get_model().region_fea_adapter(image_features)
527
+ else:
528
+ new_region_feature_map = None
529
+
530
+ return image_features, projected_image_features, new_region_feature_map
531
+
532
+ def extract_region_feature(self, region_feature_map, region_masks, original_dtype, return_dtype):
533
+ all_region_features = []
534
+ assert len(region_feature_map) == len(region_masks)
535
+ for region_feature_map_i, region_masks_list_i in zip(region_feature_map, region_masks):
536
+ if len(region_masks_list_i) == 0:
537
+ all_region_features.append(None)
538
+ else:
539
+ # (w, h)
540
+ ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,]
541
+ # list of elements of shape [num_sample_point, 2]
542
+ non_zero_pos = [rand_sample((m.nonzero()/ori_image_wh), self.get_model().max_sample_point) for m in region_masks_list_i]
543
+ # [num_mask, num_sample_point(padded), 2]
544
+ non_zero_pos = nn.utils.rnn.pad_sequence(non_zero_pos, padding_value=-1, batch_first=True)
545
+ non_zero_pos_mask = ~(non_zero_pos.sum(dim=-1) < 0)
546
+ # [HxW, C] -> [H, W, C] -> [C, H, W] -> [N, C, H, W]
547
+ h = w = int(math.sqrt(region_feature_map_i.shape[0]))
548
+ c = region_feature_map_i.shape[-1]
549
+ dup_region_feature_map_i = region_feature_map_i.reshape(h, w, c).permute(2, 0, 1)
550
+ dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(non_zero_pos.shape[0], 1, 1, 1)
551
+ # [num_mask, C, H, W] x [num_mask, num_sample_point(padded), 2] -> [num_mask, C, num_sample_point(padded)]
552
+ # F.grid_sample doesn't support BF16. Need to tranform into float32 then transform back.
553
+ dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype)
554
+ # pdb.set_trace()
555
+ region_feature_i = point_sample(dup_region_feature_map_i_ori_type,
556
+ non_zero_pos.flip(dims=(2,)).type(original_dtype),
557
+ return_dtype,
558
+ align_corners=True
559
+ )
560
+ region_feature_i = region_feature_i.to(dup_region_feature_map_i.dtype)
561
+ # [num_mask, C]
562
+ region_feature_i = torch.stack([x[m].mean(dim=0) for x, m in zip(region_feature_i.transpose(1,2), non_zero_pos_mask)]).nan_to_num()
563
+ all_region_features.append(region_feature_i)
564
+
565
+ return all_region_features
566
+
567
+ def prepare_inputs_labels_for_multimodal(
568
+ self, input_ids, position_ids, attention_mask, past_key_values, labels,
569
+ images, image_sizes=None, region_masks=None
570
+ ):
571
+ if region_masks is not None:
572
+ region_flag = True
573
+ else:
574
+ region_flag = False
575
+ region_geo_sampler = region_flag and getattr(self.config, 'region_geo_sampler', False)
576
+
577
+ vision_tower = self.get_vision_tower()
578
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
579
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
580
+
581
+ if type(images) is list or images.ndim == 5:
582
+ if type(images) is list:
583
+ images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
584
+
585
+ concat_images = torch.cat([image for image in images], dim=0)
586
+ raw_image_features, image_features, region_feature_map = self.encode_images(concat_images, region_flag=region_flag, region_geo_sampler=region_geo_sampler)
587
+ split_sizes = [image.shape[0] for image in images]
588
+ image_features = torch.split(image_features, split_sizes, dim=0)
589
+
590
+ if region_flag:
591
+ region_feature_maps = torch.split(region_feature_map, split_sizes, dim=0) # (#images, #patches, h*w, c)
592
+ # ======== This is for only taking the global image feature map for referring ======
593
+ # region_feature_map = torch.split(region_feature_map, split_sizes, dim=0)
594
+ # first_region_feature_map = [x[0:1] for x in region_feature_map]
595
+ # region_feature_map = torch.cat(first_region_feature_map, dim=0)
596
+
597
+ mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
598
+ image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square_nocrop')
599
+
600
+ if mm_patch_merge_type == 'flat':
601
+ image_features = [x.flatten(0, 1) for x in image_features]
602
+ # TODO: here we use the first feature map default for each batch (global feaure map) for referring
603
+ first_region_feature_map = [x[0:1] for x in region_feature_map]
604
+ region_feature_map = torch.cat(first_region_feature_map, dim=0) # (#images, h, w, c)
605
+ elif mm_patch_merge_type.startswith('spatial'):
606
+ new_image_features = []
607
+ new_region_features = []
608
+ for image_idx, image_feature in enumerate(image_features):
609
+ if image_feature.shape[0] > 1:
610
+ base_image_feature = image_feature[0]
611
+ image_feature = image_feature[1:]
612
+ height = width = self.get_vision_tower().num_patches_per_side
613
+ assert height * width == base_image_feature.shape[0]
614
+ if region_flag:
615
+ cur_region_feature_map = region_feature_maps[image_idx] # (#patches, h*w, c)
616
+ cur_region_feature_map = cur_region_feature_map.view(cur_region_feature_map.shape[0], height, width, cur_region_feature_map.shape[-1]) # (#patches, h, w, c)
617
+ base_region_feature = cur_region_feature_map[0]
618
+ region_feature = cur_region_feature_map[1:]
619
+ # pdb.set_trace()
620
+ if image_aspect_ratio == 'anyres':
621
+ num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
622
+ image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
623
+ if region_flag:
624
+ region_feature = region_feature.view(num_patch_height, num_patch_width, height, width, -1)
625
+ else:
626
+ raise NotImplementedError
627
+
628
+ if 'unpad' in mm_patch_merge_type:
629
+ image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
630
+ image_feature = image_feature.flatten(1, 2).flatten(2, 3)
631
+ image_feature = unpad_image(image_feature, image_sizes[image_idx])
632
+ image_feature = torch.cat((
633
+ image_feature,
634
+ self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
635
+ ), dim=-1)
636
+ image_feature = image_feature.flatten(1, 2).transpose(0, 1)
637
+ else:
638
+ image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
639
+ image_feature = image_feature.flatten(0, 3)
640
+ image_feature = torch.cat((base_image_feature, image_feature), dim=0)
641
+ if region_flag:
642
+ region_feature = region_feature.permute(0, 2, 1, 3, 4).contiguous() # (patch_h, patch_w, h, w, c) -> (patch_h, h, patch_w, w, c)
643
+ region_feature = region_feature.flatten(0, 1).flatten(1, 2) # (patch_h, h, patch_w, w, c) -> (all_h, all_w, c)
644
+ # Tranform dtype, if using pytorch2.1+, no need to do this.
645
+ base_region_feature = base_region_feature.to(dtype=torch.float32)
646
+ base_region_feature_resized = F.interpolate(base_region_feature.unsqueeze(0).permute(0, 3, 1, 2), (region_feature.shape[0], region_feature.shape[1])) # (1, c, all_h, all_w)
647
+ base_region_feature_resized = base_region_feature_resized.to(region_feature.dtype)
648
+ base_region_feature_resized = base_region_feature_resized.squeeze(0).permute(1, 2, 0) # (all_h, all_w, c)
649
+ # === Add:
650
+ new_region_feature = base_region_feature_resized + region_feature
651
+ # === Concat: A bit lower, 1/3 more GPU memory consumption.
652
+ # new_region_feature = torch.cat((base_region_feature_resized, region_feature), dim=2) # (all_h, all_w, 2c)
653
+ else:
654
+ image_feature = image_feature[0]
655
+ if 'unpad' in mm_patch_merge_type:
656
+ image_feature = torch.cat((
657
+ image_feature,
658
+ self.model.image_newline[None].to(image_feature.device)
659
+ ), dim=0)
660
+ if region_flag:
661
+ new_region_feature = region_feature_maps[image_idx][0] # (h, w, c)
662
+ new_image_features.append(image_feature)
663
+ if region_flag:
664
+ new_region_features.append(new_region_feature)
665
+ # pdb.set_trace()
666
+ image_features = new_image_features
667
+ if region_flag:
668
+ # region_feature_map = torch.stack(new_region_features, dim=0) # (#images, h, w, c or 2c)
669
+ region_feature_map = new_region_features
670
+ # pdb.set_trace()
671
+ else:
672
+ raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
673
+ else:
674
+ raw_image_features, image_features, region_feature_map = self.encode_images(images, region_flag=region_flag, region_geo_sampler=region_geo_sampler)
675
+
676
+ if region_flag:
677
+ assert len(region_masks) == len(input_ids)
678
+ for img_idx, (cur_input_id, cur_region_mask) in enumerate(zip(input_ids, region_masks)):
679
+ cur_region_token_num = (cur_input_id == self.config.im_region_fea_token).sum()
680
+ if cur_region_token_num != len(cur_region_mask):
681
+ print('Found regions cropped because of text beyond max_len, removed them.')
682
+ region_masks[img_idx] = cur_region_mask[:cur_region_token_num]
683
+
684
+ # dump_region_mask = torch.zeros(100, 100).to(device='cuda')
685
+ dump_region_mask = torch.zeros(100, 100, device='cuda')
686
+ dump_region_mask[10:20, 10:20] = 1
687
+ dump_region_masks = [[dump_region_mask.clone()]]
688
+ for _ in range(len(region_feature_map)-1):
689
+ dump_region_masks.append([])
690
+
691
+ if region_geo_sampler:
692
+ if type(image_features) is list:
693
+ region_features = self.get_model().region_geo_sampler(region_feature_map, region_masks,
694
+ original_dtype=raw_image_features.dtype,
695
+ return_dtype=image_features[0].dtype)
696
+ dump_region_features = self.get_model().region_geo_sampler(region_feature_map, dump_region_masks,
697
+ original_dtype=raw_image_features.dtype,
698
+ return_dtype=image_features[0].dtype)
699
+ else:
700
+ region_features = self.get_model().region_geo_sampler(region_feature_map, region_masks,
701
+ original_dtype=raw_image_features.dtype,
702
+ return_dtype=image_features.dtype)
703
+ dump_region_features = self.get_model().region_geo_sampler(region_feature_map, dump_region_masks,
704
+ original_dtype=raw_image_features.dtype,
705
+ return_dtype=image_features.dtype)
706
+ else:
707
+ if type(image_features) is list:
708
+ region_features = self.extract_region_feature(region_feature_map, region_masks,
709
+ original_dtype=raw_image_features.dtype,
710
+ return_dtype=image_features[0].dtype)
711
+ dump_region_features = self.extract_region_feature(region_feature_map, dump_region_masks,
712
+ original_dtype=raw_image_features.dtype,
713
+ return_dtype=image_features[0].dtype)
714
+ else:
715
+ region_features = self.extract_region_feature(region_feature_map, region_masks,
716
+ original_dtype=raw_image_features.dtype,
717
+ return_dtype=image_features.dtype)
718
+ dump_region_features = self.extract_region_feature(region_feature_map, dump_region_masks,
719
+ original_dtype=raw_image_features.dtype,
720
+ return_dtype=image_features.dtype)
721
+ # assert len(dump_region_features) == 1
722
+ assert len([df for df in dump_region_features if df is not None]) == 1
723
+ assert len(dump_region_features[0]) == 1
724
+ assert len(region_features) == len(input_ids)
725
+
726
+ # TODO: image start / end is not implemented here to support pretraining.
727
+ if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
728
+ raise NotImplementedError
729
+
730
+ # Let's just add dummy tensors if they do not exist,
731
+ # it is a headache to deal with None all the time.
732
+ # But it is not ideal, and if you have a better idea,
733
+ # please open an issue / submit a PR, thanks.
734
+ _labels = labels
735
+ _position_ids = position_ids
736
+ _attention_mask = attention_mask
737
+ if attention_mask is None:
738
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
739
+ else:
740
+ attention_mask = attention_mask.bool()
741
+ if position_ids is None:
742
+ position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
743
+ if labels is None:
744
+ labels = torch.full_like(input_ids, IGNORE_INDEX)
745
+
746
+ # remove the padding using attention_mask -- FIXME
747
+ _input_ids = input_ids
748
+ input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
749
+ labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
750
+
751
+ new_input_embeds = []
752
+ new_labels = []
753
+ cur_image_idx = 0
754
+ for batch_idx, cur_input_ids in enumerate(input_ids):
755
+ num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
756
+ if num_images == 0:
757
+ cur_image_features = image_features[cur_image_idx]
758
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
759
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
760
+ new_input_embeds.append(cur_input_embeds)
761
+ new_labels.append(labels[batch_idx])
762
+ cur_image_idx += 1
763
+ continue
764
+
765
+ image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
766
+ cur_input_id_with_im = []
767
+ cur_input_ids_noim = []
768
+ cur_labels = labels[batch_idx]
769
+ cur_labels_noim = []
770
+ for i in range(len(image_token_indices) - 1):
771
+ cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
772
+ cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
773
+ split_sizes = [x.shape[0] for x in cur_labels_noim]
774
+ cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
775
+ cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
776
+ cur_new_input_embeds = []
777
+ cur_new_labels = []
778
+ assert len(cur_input_ids_noim) == len(cur_input_embeds_no_im)
779
+ for i in range(num_images + 1):
780
+ cur_input_id_with_im.append(cur_input_ids_noim[i])
781
+ cur_new_input_embeds.append(cur_input_embeds_no_im[i])
782
+ cur_new_labels.append(cur_labels_noim[i])
783
+ if i < num_images:
784
+ cur_image_features = image_features[cur_image_idx]
785
+ cur_image_idx += 1
786
+ cur_input_id_with_im.append(torch.full((cur_image_features.shape[0],), IMAGE_TOKEN_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
787
+ cur_new_input_embeds.append(cur_image_features)
788
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
789
+
790
+ cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
791
+
792
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds)
793
+ cur_new_labels = torch.cat(cur_new_labels)
794
+ cur_input_id_with_im = torch.cat(cur_input_id_with_im)
795
+
796
+ assert len(cur_input_id_with_im) == len(cur_new_input_embeds)
797
+ # Add region feature into text feature embeddings.
798
+ # Currently only support one image in each input.
799
+ assert batch_idx+1 == cur_image_idx
800
+ if region_flag and region_features[batch_idx] is not None:
801
+ region_embs = torch.zeros_like(cur_new_input_embeds)
802
+ region_replace_mask = (cur_input_id_with_im == self.config.im_region_fea_token)
803
+ # region_embs[region_replace_mask] = region_features[batch_idx].to(cur_new_input_embeds.dtype)
804
+ if len(region_embs[region_replace_mask]) != len(region_features[batch_idx]):
805
+ # ("Found a region cropped in text")
806
+ region_embs[region_replace_mask] = region_features[batch_idx][:len(region_embs[region_replace_mask])].to(cur_new_input_embeds.dtype)
807
+ else:
808
+ region_embs[region_replace_mask] = region_features[batch_idx].to(cur_new_input_embeds.dtype)
809
+ cur_new_input_embeds = cur_new_input_embeds * (~region_replace_mask).to(cur_new_input_embeds.dtype)[:, None] + region_embs
810
+ else:
811
+ if hasattr(self.config, 'im_region_fea_token'):
812
+ assert (cur_input_id_with_im == self.config.im_region_fea_token).sum() == 0
813
+
814
+ # Add dump region feature to input embedding, to make sure the gradient for region sampler always exist when open region_flag.
815
+ if region_flag:
816
+ # cur_new_input_embeds[0] = cur_new_input_embeds[0] + 0 * dump_region_features[0, 0].to(cur_new_input_embeds.dtype)
817
+ cur_new_input_embeds[0] = cur_new_input_embeds[0] + 0.0 * dump_region_features[0][0].to(cur_new_input_embeds.dtype)
818
+
819
+ new_input_embeds.append(cur_new_input_embeds)
820
+ new_labels.append(cur_new_labels)
821
+
822
+ # Truncate sequences to max length as image embeddings can make the sequence longer
823
+ tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
824
+ if tokenizer_model_max_length is not None:
825
+ new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
826
+ new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
827
+
828
+ # Combine them
829
+ max_len = max(x.shape[0] for x in new_input_embeds)
830
+ batch_size = len(new_input_embeds)
831
+
832
+ new_input_embeds_padded = []
833
+ new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
834
+ attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
835
+ position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
836
+
837
+ for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
838
+ cur_len = cur_new_embed.shape[0]
839
+ if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
840
+ new_input_embeds_padded.append(torch.cat((
841
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
842
+ cur_new_embed
843
+ ), dim=0))
844
+ if cur_len > 0:
845
+ new_labels_padded[i, -cur_len:] = cur_new_labels
846
+ attention_mask[i, -cur_len:] = True
847
+ position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
848
+ else:
849
+ new_input_embeds_padded.append(torch.cat((
850
+ cur_new_embed,
851
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
852
+ ), dim=0))
853
+ if cur_len > 0:
854
+ new_labels_padded[i, :cur_len] = cur_new_labels
855
+ attention_mask[i, :cur_len] = True
856
+ position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
857
+
858
+ new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
859
+
860
+ if _labels is None:
861
+ new_labels = None
862
+ else:
863
+ new_labels = new_labels_padded
864
+
865
+ if _attention_mask is None:
866
+ attention_mask = None
867
+ else:
868
+ attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
869
+
870
+ if _position_ids is None:
871
+ position_ids = None
872
+
873
+ return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
874
+
875
+ def initialize_vision_tokenizer(self, model_args, tokenizer, add_region_feature=False):
876
+ if model_args.mm_use_im_patch_token:
877
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
878
+ self.resize_token_embeddings(len(tokenizer))
879
+
880
+ if add_region_feature:
881
+ region_token_id = tokenizer.convert_tokens_to_ids([DEFAULT_REGION_FEA_TOKEN])[0]
882
+ # If region_token doesn't exist, add it.
883
+ if region_token_id == tokenizer.unk_token_id:
884
+ num_region_fea_tokens = tokenizer.add_tokens([DEFAULT_REGION_FEA_TOKEN], special_tokens=True)
885
+ self.config.im_region_fea_token = tokenizer.convert_tokens_to_ids([DEFAULT_REGION_FEA_TOKEN])[0]
886
+ self.resize_token_embeddings(len(tokenizer))
887
+
888
+ if model_args.mm_use_im_start_end:
889
+ num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
890
+ self.resize_token_embeddings(len(tokenizer))
891
+
892
+ if add_region_feature:
893
+ num_new_tokens = num_new_tokens + num_region_fea_tokens
894
+
895
+ if num_new_tokens > 0:
896
+ input_embeddings = self.get_input_embeddings().weight.data
897
+ output_embeddings = self.get_output_embeddings().weight.data
898
+
899
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
900
+ dim=0, keepdim=True)
901
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
902
+ dim=0, keepdim=True)
903
+
904
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
905
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
906
+
907
+ if model_args.tune_mm_mlp_adapter:
908
+ for p in self.get_input_embeddings().parameters():
909
+ p.requires_grad = True
910
+ for p in self.get_output_embeddings().parameters():
911
+ p.requires_grad = False
912
+
913
+ if model_args.pretrain_mm_mlp_adapter:
914
+ mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
915
+ embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
916
+ assert num_new_tokens == 2
917
+ if input_embeddings.shape == embed_tokens_weight.shape:
918
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
919
+ elif embed_tokens_weight.shape[0] == num_new_tokens:
920
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight
921
+ else:
922
+ raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
923
+ elif model_args.mm_use_im_patch_token:
924
+ if model_args.tune_mm_mlp_adapter:
925
+ for p in self.get_input_embeddings().parameters():
926
+ p.requires_grad = False
927
+ for p in self.get_output_embeddings().parameters():
928
+ p.requires_grad = False