Ferret-UI-Llama8b / inference.py
jadechoghari's picture
Update inference.py
2efe921 verified
import subprocess
import os
import subprocess
from PIL import Image, ImageDraw
import re
import json
import subprocess
def process_inference_results(results, process_image=False):
"""
Process the inference results by:
1. Adding bounding boxes on the image based on the coordinates in 'text'.
2. Extracting and returning the text prompt.
:param results: List of inference results with bounding boxes in 'text'.
:return: (image, text)
"""
processed_images = []
extracted_texts = []
for result in results:
image_path = result['image_path']
img = Image.open(image_path).convert("RGB")
draw = ImageDraw.Draw(img)
bbox_str = re.search(r'\[\[([0-9,\s]+)\]\]', result['text'])
if bbox_str:
bbox = [int(coord) for coord in bbox_str.group(1).split(',')]
x1, y1, x2, y2 = bbox
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
extracted_texts.append(result['text'])
processed_images.append(img)
if process_image:
return processed_images, extracted_texts
return extracted_texts
def inference_and_run(image_path, prompt, conv_mode="ferret_llama_3", model_path="jadechoghari/Ferret-UI-Llama8b", box=None, process_image=False):
"""
Run the inference and capture the errors for debugging.
"""
data_input = [{
"id": 0,
"image": os.path.basename(image_path),
"image_h": Image.open(image_path).height,
"image_w": Image.open(image_path).width,
"conversations": [{"from": "human", "value": f"<image>\n{prompt}"}]
}]
if box:
data_input[0]["box_x1y1x2y2"] = [[box]]
with open("eval.json", "w") as json_file:
json.dump(data_input, json_file)
print("eval.json file created successfully.")
cmd = [
"python", "-m", "model_UI",
"--model_path", model_path,
"--data_path", "eval.json",
"--image_path", ".",
"--answers_file", "eval_output.jsonl",
"--num_beam", "1",
"--max_new_tokens", "1024",
"--conv_mode", conv_mode
]
if box:
cmd.extend(["--region_format", "box", "--add_region_feature"])
try:
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
print(f"Subprocess output:\n{result.stdout}")
print(f"Subprocess error (if any):\n{result.stderr}")
print(f"Inference completed. Output written to eval_output.jsonl")
output_folder = 'eval_output.jsonl'
if os.path.exists(output_folder):
json_files = [f for f in os.listdir(output_folder) if f.endswith(".jsonl")]
if json_files:
output_file_path = os.path.join(output_folder, json_files[0])
with open(output_file_path, "r") as output_file:
results = [json.loads(line) for line in output_file]
return process_inference_results(results, process_image)
else:
print("No output JSONL files found.")
return None, None
else:
print("Output folder not found.")
return None, None
except subprocess.CalledProcessError as e:
print(f"Error occurred during inference:\n{e}")
print(f"Subprocess output:\n{e.output}")
return None, None