|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import shutil |
|
import pdb |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig |
|
import torch |
|
|
|
CONTROLLER_HEART_BEAT_EXPIRATION = 30 |
|
WORKER_HEART_BEAT_INTERVAL = 15 |
|
|
|
LOGDIR = "." |
|
|
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
IMAGE_PLACEHOLDER = "<image-placeholder>" |
|
|
|
|
|
DEFAULT_REGION_FEA_TOKEN = "<region_fea>" |
|
VOCAB_IMAGE_W = 1000 |
|
VOCAB_IMAGE_H = 1000 |
|
|
|
|
|
GROUNDING_TEMPLATES = [ |
|
'\nProvide the bounding boxes of the mentioned objects.', |
|
'\nInclude the coordinates for each mentioned object.', |
|
'\nLocate the objects with their coordinates.', |
|
'\nAnswer in [x1, y1, x2, y2] format.', |
|
'\nMention the objects and their locations using the format [x1, y1, x2, y2].', |
|
'\nDraw boxes around the mentioned objects.', |
|
'\nUse boxes to show where each thing is.', |
|
'\nTell me where the objects are with coordinates.', |
|
'\nList where each object is with boxes.', |
|
'\nShow me the regions with boxes.' |
|
] |
|
DEFAULT_REGION_FEA_TOKEN = "<region_fea>" |
|
|
|
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto"): |
|
kwargs = {"device_map": device_map} |
|
|
|
if load_8bit: |
|
kwargs['load_in_8bit'] = True |
|
elif load_4bit: |
|
kwargs['load_in_4bit'] = True |
|
kwargs['quantization_config'] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4' |
|
) |
|
else: |
|
kwargs['torch_dtype'] = torch.float16 |
|
|
|
if 'llava' in model_name.lower() or 'ferret' in model_name.lower(): |
|
|
|
if 'lora' in model_name.lower() and model_base is not None: |
|
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
print('Loading LLaVA/FERRET from base model...') |
|
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) |
|
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features |
|
if model.lm_head.weight.shape[0] != token_num: |
|
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
|
|
print('Loading additional LLaVA/FERRET weights...') |
|
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): |
|
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') |
|
else: |
|
|
|
from huggingface_hub import hf_hub_download |
|
def load_from_hf(repo_id, filename, subfolder=None): |
|
cache_file = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder) |
|
return torch.load(cache_file, map_location='cpu') |
|
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') |
|
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} |
|
if any(k.startswith('model.model.') for k in non_lora_trainables): |
|
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} |
|
model.load_state_dict(non_lora_trainables, strict=False) |
|
|
|
from peft import PeftModel |
|
print('Loading LoRA weights...') |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print('Merging LoRA weights...') |
|
model = model.merge_and_unload() |
|
print('Model is loaded...') |
|
elif model_base is not None: |
|
|
|
print('Loading LLaVA/FERRET from base model...') |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) |
|
|
|
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') |
|
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} |
|
model.load_state_dict(mm_projector_weights, strict=False) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
else: |
|
|
|
if model_base is not None: |
|
|
|
from peft import PeftModel |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") |
|
print(f"Loading LoRA weights from {model_path}") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print(f"Merging weights") |
|
model = model.merge_and_unload() |
|
print('Convert to FP16...') |
|
model.to(torch.float16) |
|
else: |
|
use_fast = False |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
|
|
image_processor = None |
|
|
|
if 'llava' in model_name.lower() or 'ferret' in model_name.lower(): |
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
mm_im_region_fea_token = getattr(model.config, "im_region_fea_token", None) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_im_region_fea_token is not None: |
|
tokenizer.add_tokens([DEFAULT_REGION_FEA_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
vision_tower = model.get_vision_tower() |
|
vision_tower_path = os.path.join(model_path, 'vision_tower') |
|
if not vision_tower.is_loaded or os.path.exists(vision_tower_path): |
|
if os.path.exists(vision_tower_path): |
|
print(f'Start Loading vision tower from {vision_tower_path}') |
|
vision_tower.load_model(vision_tower_path=vision_tower_path) |
|
print(f'Finish Loading vision tower from {vision_tower_path}') |
|
else: |
|
vision_tower.load_model() |
|
|
|
vision_tower.to(device='cuda', dtype=torch.float16) |
|
image_processor = vision_tower.image_processor |
|
|
|
if hasattr(model.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
else: |
|
context_len = 2048 |
|
|
|
return tokenizer, model, image_processor, context_len |