|
import torch |
|
from PIL import Image |
|
from conversation import conv_templates |
|
from builder import load_pretrained_model |
|
from functools import partial |
|
from typing import Optional, Callable |
|
import ast |
|
import math |
|
import numpy as np |
|
DEFAULT_REGION_FEA_TOKEN = "<region_fea>" |
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
VOCAB_IMAGE_W = 1000 |
|
VOCAB_IMAGE_H = 1000 |
|
IMAGE_TOKEN_INDEX = -200 |
|
|
|
|
|
|
|
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0'] |
|
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction'] |
|
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4'] |
|
|
|
def get_bbox_coor(box, ratio_w, ratio_h): |
|
return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h |
|
|
|
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
if '<image>' in prompt: |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] |
|
input_ids = [] |
|
for i, chunk in enumerate(prompt_chunks): |
|
input_ids.extend(chunk) |
|
if i < len(prompt_chunks) - 1: |
|
input_ids.append(image_token_index) |
|
else: |
|
input_ids = tokenizer(prompt).input_ids |
|
|
|
|
|
|
|
|
|
return input_ids |
|
|
|
|
|
def expand2square(pil_img, background_color): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
def select_best_resolution(original_size, possible_resolutions): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float('inf') |
|
|
|
for width, height in possible_resolutions: |
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
return best_fit |
|
|
|
def divide_to_patches(image, patch_size): |
|
""" |
|
Divides an image into patches of a specified size. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
patch_size (int): The size of each patch. |
|
|
|
Returns: |
|
list: A list of PIL.Image.Image objects representing the patches. |
|
""" |
|
patches = [] |
|
width, height = image.size |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
box = (j, i, j + patch_size, i + patch_size) |
|
patch = image.crop(box) |
|
patches.append(patch) |
|
|
|
return patches |
|
def resize_and_pad_image(image, target_resolution, is_pad=False): |
|
""" |
|
Resize and pad an image to a target resolution while maintaining aspect ratio. |
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
target_resolution (tuple): The target resolution (width, height) of the image. |
|
Returns: |
|
PIL.Image.Image: The resized and padded image. |
|
""" |
|
original_width, original_height = image.size |
|
target_width, target_height = target_resolution |
|
|
|
if is_pad: |
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
|
|
if scale_w < scale_h: |
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
|
|
resized_image = image.resize((new_width, new_height)) |
|
|
|
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) |
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
new_image.paste(resized_image, (paste_x, paste_y)) |
|
else: |
|
new_image = image.resize((target_width, target_height)) |
|
|
|
return new_image |
|
|
|
def process_anyres_image(image, processor, grid_pinpoints, image_process_func: Optional[Callable] = None): |
|
""" |
|
Process an image with variable resolutions. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image to be processed. |
|
processor: The image processor object. |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
|
|
Returns: |
|
torch.Tensor: A tensor containing the processed image patches. |
|
""" |
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
|
|
best_resolution = select_best_resolution(image.size, possible_resolutions) |
|
|
|
|
|
image_padded = resize_and_pad_image(image, best_resolution, is_pad=False) |
|
|
|
patches = divide_to_patches(image_padded, processor.crop_size['height']) |
|
|
|
if image_process_func: |
|
resized_image_h, resized_image_w = image_process_func.keywords['size'] |
|
image_original_resize = image.resize((resized_image_w, resized_image_h)) |
|
image_patches = [image_original_resize] + patches |
|
image_patches = [image_process_func(image_patch)['pixel_values'][0] |
|
for image_patch in image_patches] |
|
else: |
|
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) |
|
image_patches = [image_original_resize] + patches |
|
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0] |
|
for image_patch in image_patches] |
|
|
|
return torch.stack(image_patches, dim=0) |
|
|
|
|
|
def process_images(images, image_processor, model_cfg, image_process_func: Optional[Callable] = None): |
|
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) |
|
new_images = [] |
|
if image_aspect_ratio == 'pad': |
|
for image in images: |
|
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) |
|
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] |
|
new_images.append(image) |
|
elif image_aspect_ratio == "anyres": |
|
|
|
for image in images: |
|
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints, image_process_func=image_process_func) |
|
new_images.append(image) |
|
else: |
|
return image_processor(images, return_tensors='pt')['pixel_values'] |
|
if all(x.shape == new_images[0].shape for x in new_images): |
|
new_images = torch.stack(new_images, dim=0) |
|
return new_images |
|
|
|
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None): |
|
""" |
|
Generates a region mask based on provided coordinates. |
|
Handles both point and box input. |
|
""" |
|
if mask is not None: |
|
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h |
|
coor_mask = np.zeros((raw_w, raw_h)) |
|
|
|
|
|
if len(coor) == 2: |
|
span = 5 |
|
x_min = max(0, coor[0] - span) |
|
x_max = min(raw_w, coor[0] + span + 1) |
|
y_min = max(0, coor[1] - span) |
|
y_max = min(raw_h, coor[1] + span + 1) |
|
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1 |
|
assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}" |
|
|
|
|
|
elif len(coor) == 4: |
|
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1 |
|
if mask is not None: |
|
coor_mask = coor_mask * mask |
|
|
|
|
|
coor_mask = torch.from_numpy(coor_mask) |
|
assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :(" |
|
|
|
|
|
return coor_mask |
|
|
|
|
|
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_llama", conv_mode="ferret_llama_3", add_region_feature=False): |
|
img = Image.open(image_path).convert('RGB') |
|
|
|
|
|
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name) |
|
|
|
image_size = {"height": 336, "width": 336} |
|
|
|
if "<image>" in prompt: |
|
prompt = prompt.split('\n')[1] |
|
|
|
if model.config.mm_use_im_start_end: |
|
prompt = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + prompt |
|
else: |
|
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt |
|
|
|
|
|
conv = conv_templates[conv_mode].copy() |
|
conv.append_message(conv.roles[0], prompt) |
|
conv.append_message(conv.roles[1], None) |
|
prompt_input = conv.get_prompt() |
|
|
|
input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda() |
|
|
|
|
|
raw_w = image_size["width"] |
|
raw_h = image_size["height"] |
|
if model.config.image_aspect_ratio == "square_nocrop": |
|
image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True, |
|
do_center_crop=False, size=[raw_h, raw_w])['pixel_values'][0] |
|
elif model.config.image_aspect_ratio == "anyres": |
|
image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[raw_h, raw_h]) |
|
image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0] |
|
else: |
|
image_tensor = process_images([img], image_processor, model.config)[0] |
|
|
|
images = image_tensor.unsqueeze(0).to(torch.float16).cuda() |
|
|
|
|
|
|
|
|
|
region_masks = None |
|
if add_region_feature and region is not None: |
|
|
|
raw_w, raw_h = img.size |
|
ratio_w = VOCAB_IMAGE_W * 1.0 / raw_w |
|
ratio_h = VOCAB_IMAGE_H * 1.0 / raw_h |
|
|
|
box_x1, box_y1, box_x2, box_y2 = region |
|
box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=region, ratio_h=ratio_h, ratio_w=ratio_w) |
|
region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2] |
|
|
|
region_masks = generate_mask_for_feature(region_coordinate_raw, raw_w, raw_h).unsqueeze(0).cuda().half() |
|
region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]] |
|
prompt_input = prompt_input.replace("<bbox_location0>", f"[{box_x1_textvocab}, {box_y1_textvocab}, {box_x2_textvocab}, {box_y2_textvocab}] {DEFAULT_REGION_FEA_TOKEN}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.inference_mode(): |
|
|
|
model.orig_forward = model.forward |
|
model.forward = partial( |
|
model.orig_forward, |
|
region_masks=region_masks |
|
) |
|
|
|
output_ids = model.generate( |
|
input_ids, |
|
images=images, |
|
max_new_tokens=1024, |
|
num_beams=1, |
|
region_masks=region_masks, |
|
image_sizes=[img.size] |
|
) |
|
model.forward = model.orig_forward |
|
|
|
|
|
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] |
|
return output_text.strip() |
|
|
|
|
|
def infer_ui_task(image_path, prompt, model_path, task, region=None, add_region_feature=False): |
|
""" |
|
Handles task types: box_in_tasks, box_out_tasks, no_box_tasks. |
|
""" |
|
if region is not None: |
|
add_region_feature=True |
|
if task in box_in_tasks and region is None: |
|
raise ValueError(f"Task {task} requires a bounding box region.") |
|
|
|
if task in box_in_tasks: |
|
print(f"Processing {task} with bounding box region.") |
|
return infer_single_prompt(image_path, prompt, model_path, region, add_region_feature=add_region_feature) |
|
|
|
elif task in box_out_tasks: |
|
print(f"Processing {task} without bounding box region.") |
|
return infer_single_prompt(image_path, prompt, model_path) |
|
|
|
elif task in no_box_tasks: |
|
print(f"Processing {task} without image or bounding box.") |
|
return infer_single_prompt(image_path, prompt, model_path) |
|
|
|
else: |
|
raise ValueError(f"Unknown task type: {task}") |