Ferret-UI-Llama8b / ferret_arch.py
jadechoghari's picture
Update ferret_arch.py
806ce4b verified
raw
history blame
50.8 kB
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
import re
from .clip_encoder import CLIPVisionTower, CLIPVisionTowerS2
import os
## modified add build_vision_tower
def build_vision_tower(vision_tower_cfg, **kwargs):
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
is_absolute_path_exists = os.path.exists(vision_tower)
use_s2 = getattr(vision_tower_cfg, 's2', False)
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
if use_s2:
return CLIPVisionTowerS2(vision_tower, args=vision_tower_cfg, **kwargs)
else:
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
raise ValueError(f'Unknown vision tower: {vision_tower}')
# from .multimodal_projector.builder import build_vision_projector
def build_vision_projector(config, delay_load=False, **kwargs):
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == 'linear':
return nn.Linear(config.mm_hidden_size, config.hidden_size)
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
return nn.Sequential(*modules)
if projector_type == 'identity':
return IdentityMap()
raise ValueError(f'Unknown projector type: {projector_type}')
#This has been modified for hf implementation
from .constants import (IGNORE_INDEX, IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN, DEFAULT_REGION_FEA_TOKEN)
#This has been modified for hf implementation
from .mm_utils import get_anyres_image_grid_shape
import os
def rand_sample(x, max_len):
if x.shape[0] <= max_len:
return x
else:
rand_idx = torch.randperm(x.shape[0])[:max_len]
return x[rand_idx, :]
def rand_sample_repeat(x, max_len):
if x.shape[0] < max_len:
indices = torch.randint(0, x.shape[0], (max_len-x.shape[0],))
# pdb.set_trace()
return torch.cat((x, x[indices]), dim=0)
elif x.shape[0] == max_len:
return x
else:
rand_idx = torch.randperm(x.shape[0])[:max_len]
return x[rand_idx, :]
def point_sample(input, point_coords, return_dtype, **kwargs):
"""
A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors.
Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside
[0, 1] x [0, 1] square.
Args:
input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid.
point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains
[0, 1] x [0, 1] normalized point coordinates.
Returns:
output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains
features for points in `point_coords`. The features are obtained via bilinear
interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`.
"""
add_dim = False
if point_coords.dim() == 3:
add_dim = True
point_coords = point_coords.unsqueeze(2)
# output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs)
output = F.grid_sample(input.float(), (2.0 * point_coords - 1.0).float(), **kwargs)
output = output.to(return_dtype)
if add_dim:
output = output.squeeze(3)
return output
def farthest_point_sample(xyz, npoint):
"""
Input:
xyz: pointcloud data, [B, N, 2]
npoint: number of samples
Return:
centroids: sampled pointcloud index, [B, npoint]
"""
device = xyz.device
B, N, C = xyz.shape
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
distance = torch.ones(B, N).to(device) * 1e10
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
batch_indices = torch.arange(B, dtype=torch.long).to(device)
for i in range(npoint):
centroids[:, i] = farthest
centroid = xyz[batch_indices, farthest, :].view(B, 1, 2)
dist = torch.sum((xyz - centroid) ** 2, -1)
distance = torch.min(distance, dist)
farthest = torch.max(distance, -1)[1]
return centroids
def index_points(points, idx):
"""
Input:
points: input points data, [B, N, C]
idx: sample index data, [B, S]
Return:
new_points:, indexed points data, [B, S, C]
"""
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
new_points = points[batch_indices, idx, :]
return new_points
def square_distance(src, dst):
"""
Calculate Euclid distance between each two points.
src^T * dst = xn * xm + yn * ym + zn * zm;
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
Input:
src: source points, [B, N, C]
dst: target points, [B, M, C]
Output:
dist: per-point square distance, [B, N, M]
"""
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src ** 2, -1).view(B, N, 1)
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
return dist
def knn_point(nsample, xyz, new_xyz):
"""
Input:
nsample: max sample number in local region
xyz: all points, [B, N, C]
new_xyz: query points, [B, S, C]
Return:
group_idx: grouped points index, [B, S, nsample]
"""
sqrdists = square_distance(new_xyz, xyz)
_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
return group_idx
class ConvReLULN1D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, bias=True):
super(ConvReLULN1D, self).__init__()
self.act = nn.ReLU(inplace=True)
self.net = nn.Sequential(
nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias),
self.act
)
self.norm = nn.LayerNorm(out_channels)
def forward(self, x):
# (B, C, N) -> (B, C_1, N)
x = self.net(x)
x = x.permute(0, 2, 1)
x = self.norm(x)
x = x.permute(0, 2, 1)
return x
def normal_init(module, mean=0, std=1, bias=0):
if hasattr(module, 'weight') and module.weight is not None:
nn.init.normal_(module.weight, mean, std)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
class GeoRegionSampler(nn.Module):
def __init__(self,
input_dim,
output_dim,
num_init_point,
num_sub_point,
num_neighbor,
pooler_mode='mean'):
super(GeoRegionSampler, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_init_point = num_init_point
self.num_sub_point = num_sub_point
self.num_neighbor = num_neighbor
self.diff_projector_list = nn.ModuleList()
self.agg_projector_list = nn.ModuleList()
self.pooler_list = nn.ModuleList()
for ii in range(len(num_sub_point)):
self.diff_projector_list.append(nn.Linear(self.input_dim + 2, self.input_dim + 2))
self.agg_projector_list.append(ConvReLULN1D(in_channels=2*(self.input_dim + 2),
out_channels=self.input_dim,
))
if pooler_mode == 'mean':
self.pooler_list.append(nn.AvgPool1d(kernel_size=num_neighbor[ii]))
elif pooler_mode =='max':
self.pooler_list.append(nn.AdaptiveMaxPool1d(output_size=1))
else:
raise NotImplementedError(f'{self.pooler_mode} is not supported.')
self.flatten_projector = nn.Linear(self.input_dim * num_sub_point[-1], self.input_dim)
self.dim_projector = nn.Linear(self.input_dim, self.output_dim)
# self.dim_projector = nn.Sequential(*[
# nn.Linear(self.input_dim, self.output_dim),
# nn.GELU(),
# nn.Linear(self.output_dim, self.output_dim)
# ])
self.norm_init_weights()
# self.dtype = torch.float32
def norm_init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, 0, 0.01)
def forward(self,
feature_map,
region_masks,
original_dtype,
return_dtype):
assert len(feature_map) == len(region_masks)
all_points = []
all_points_fea = []
all_points_img_ids = []
# Sample points and their features
for img_idx, (region_feature_map_i, region_masks_list_i) in enumerate(zip(feature_map, region_masks)):
if len(region_masks_list_i) != 0:
# (w, h)
ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,]
# list of elements of shape [num_sample_point, 2]
cur_non_zero_pos = [rand_sample_repeat((m.nonzero()/ori_image_wh), self.num_init_point) for m in region_masks_list_i]
# list -> [num_mask, num_sample_point, 2]
cur_non_zero_pos = torch.stack(cur_non_zero_pos)
# [HxW, C] -> [H, W, C] -> [C, H, W] -> [N, C, H, W]
if region_feature_map_i.ndim == 2:
h = w = int(math.sqrt(region_feature_map_i.shape[0]))
c = region_feature_map_i.shape[-1]
region_feature_map_i = region_feature_map_i.reshape(h, w, c)
else:
assert region_feature_map_i.ndim == 3
dup_region_feature_map_i = region_feature_map_i.permute(2, 0, 1)
dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(cur_non_zero_pos.shape[0], 1, 1, 1)
# [num_mask, C, H, W] x [num_mask, num_sample_point, 2] -> [num_mask, C, num_sample_point] -> [num_mask, num_sample_point, C]
# F.grid_sample doesn't support BF16. Need to tranform into float32 then transform back.
dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype)
region_feature_i = point_sample(dup_region_feature_map_i_ori_type,
cur_non_zero_pos.flip(dims=(2,)).type(original_dtype),
return_dtype,
align_corners=True,
)
# region_feature_i = region_feature_i.to(dup_region_feature_map_i.dtype)
region_feature_i = region_feature_i.transpose(-2, -1)
cur_img_ids = [img_idx] * len(cur_non_zero_pos)
# save to global list
all_points.append(cur_non_zero_pos)
all_points_fea.append(region_feature_i)
all_points_img_ids.extend(cur_img_ids)
# No region found, return list of None.
if len(all_points) == 0:
return [None] * len(region_masks)
all_points = torch.cat(all_points, dim=0).to(return_dtype) # [B*num_mask, num_sample_point, 2]
all_points_fea = torch.cat(all_points_fea, dim=0) # [B*num_mask, num_sample_point, C]
all_points_img_ids = torch.tensor(all_points_img_ids, device=all_points_fea.device)
assert all_points_fea.shape[:-1] == all_points_fea.shape[:-1]
# Processing.
for stage_i in range(len(self.num_sub_point)):
cur_num_sub_point = self.num_sub_point[stage_i]
cur_num_neighbor = self.num_neighbor[stage_i]
all_points = all_points.contiguous() # xy [btach, points, xy]
fps_idx = farthest_point_sample(all_points, cur_num_sub_point).long()
new_points = index_points(all_points, fps_idx) # [B, npoint, 2]
new_points_fea = index_points(all_points_fea, fps_idx) # [B, npoint, d]
idx = knn_point(cur_num_neighbor, all_points, new_points)
grouped_points = index_points(all_points, idx) # [B, npoint, k, 2]
grouped_points_fea = index_points(all_points_fea, idx) # [B, npoint, k, d]
local_points_fea = torch.cat([grouped_points_fea, grouped_points],dim=-1) # [B, npoint, k, d+2]
anchor_points_fea = torch.cat([new_points_fea, new_points],dim=-1).unsqueeze(-2)
diff_points_fea = local_points_fea-anchor_points_fea
diff_points_fea = self.diff_projector_list[stage_i](diff_points_fea)
gather_points_fea = torch.cat([diff_points_fea, anchor_points_fea.repeat(1, 1, cur_num_neighbor, 1)], dim=-1) # [B, npoint, k, 2(d+2)]
b, n, s, d = gather_points_fea.size()
gather_points_fea = gather_points_fea.permute(0, 1, 3, 2) # [B, npoint, 2(d+2), k]
gather_points_fea = gather_points_fea.reshape(-1, d, s) # [B*npoint, 2(d+2), k]
gather_points_fea = self.agg_projector_list[stage_i](gather_points_fea) # [B*npoint, d, k]
batch_size, new_dim, _ = gather_points_fea.size()
gather_points_fea = self.pooler_list[stage_i](gather_points_fea).view(batch_size, new_dim) # [B*npoint, d]
gather_points_fea = gather_points_fea.reshape(b, n, -1) # [B, npoint, d]
all_points = new_points
all_points_fea = gather_points_fea
x = all_points_fea.flatten(1, -1) # [B, npoint x d]
x = self.flatten_projector(x)
all_region_fea = self.dim_projector(x) # [B, d]
output_region_fea = []
for img_idx in range(len(region_masks)):
cur_mask = all_points_img_ids == img_idx
if not cur_mask.any():
output_region_fea.append(None)
else:
output_region_fea.append(all_region_fea[cur_mask])
return output_region_fea
class FerretMetaModel:
def __init__(self, config):
super(FerretMetaModel, self).__init__(config)
self.max_sample_point = 512
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
self.image_newline = nn.Parameter(
torch.empty(config.hidden_size, dtype=self.dtype)
)
if hasattr(config, "region_fea_adapter"):
self.region_fea_adapter = nn.Linear(config.mm_hidden_size, config.hidden_size)
if hasattr(config, "region_geo_sampler"):
if getattr(config, 'mm_patch_merge_type', 'flat').startswith('spatial'):
self.region_geo_sampler = GeoRegionSampler(input_dim=config.mm_hidden_size,
output_dim=config.hidden_size,
num_init_point=self.max_sample_point,
num_sub_point=[128, 32],
num_neighbor=[24, 24],
pooler_mode=config.sampler_pooler_mode
)
else:
self.region_geo_sampler = GeoRegionSampler(input_dim=config.mm_hidden_size,
output_dim=config.hidden_size,
num_init_point=self.max_sample_point,
num_sub_point=[128, 32],
num_neighbor=[24, 24],
pooler_mode=config.sampler_pooler_mode
)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None,
add_region_feature=False,
region_geo_sampler=False,
sampler_pooler_mode='mean',
):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
mm_patch_merge_type = model_args.mm_patch_merge_type
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.mm_patch_merge_type = mm_patch_merge_type
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
if 'unpad' in mm_patch_merge_type:
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
self.image_newline = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
if add_region_feature:
if region_geo_sampler:
self.config.region_geo_sampler = True
self.config.sampler_pooler_mode = sampler_pooler_mode
if not hasattr(self, 'region_geo_sampler'):
if mm_patch_merge_type.startswith('spatial'):
# === if feature is concated ===
# self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size * 2,
# output_dim=self.config.hidden_size,
# num_init_point=self.max_sample_point,
# num_sub_point=[128, 32],
# num_neighbor=[24, 24],
# pooler_mode=sampler_pooler_mode
# )
# === if feature is added ===
self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size,
output_dim=self.config.hidden_size,
num_init_point=self.max_sample_point,
num_sub_point=[128, 32],
num_neighbor=[24, 24],
pooler_mode=sampler_pooler_mode
)
else:
self.region_geo_sampler = GeoRegionSampler(input_dim=self.config.mm_hidden_size,
output_dim=self.config.hidden_size,
num_init_point=self.max_sample_point,
num_sub_point=[128, 32],
num_neighbor=[24, 24],
pooler_mode=sampler_pooler_mode
)
else:
self.config.region_fea_adapter = True
if not hasattr(self, 'region_fea_adapter'):
self.region_fea_adapter = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
# print(f"pretrain mm mlp adapter: {type(pretrain_mm_mlp_adapter)}") # String
if pretrain_mm_mlp_adapter is not None and pretrain_mm_mlp_adapter != "None":
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of PIL image (width, height).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding:current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding:current_width - padding]
return unpadded_tensor
class FerretMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images, region_flag=False, region_geo_sampler=False):
image_features = self.get_model().get_vision_tower()(images)
projected_image_features = self.get_model().mm_projector(image_features)
if region_flag:
if region_geo_sampler:
new_region_feature_map = image_features
else:
new_region_feature_map = self.get_model().region_fea_adapter(image_features)
else:
new_region_feature_map = None
return image_features, projected_image_features, new_region_feature_map
def extract_region_feature(self, region_feature_map, region_masks, original_dtype, return_dtype):
all_region_features = []
assert len(region_feature_map) == len(region_masks)
for region_feature_map_i, region_masks_list_i in zip(region_feature_map, region_masks):
if len(region_masks_list_i) == 0:
all_region_features.append(None)
else:
# (w, h)
ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,]
# list of elements of shape [num_sample_point, 2]
non_zero_pos = [rand_sample((m.nonzero()/ori_image_wh), self.get_model().max_sample_point) for m in region_masks_list_i]
# [num_mask, num_sample_point(padded), 2]
non_zero_pos = nn.utils.rnn.pad_sequence(non_zero_pos, padding_value=-1, batch_first=True)
non_zero_pos_mask = ~(non_zero_pos.sum(dim=-1) < 0)
# [HxW, C] -> [H, W, C] -> [C, H, W] -> [N, C, H, W]
h = w = int(math.sqrt(region_feature_map_i.shape[0]))
c = region_feature_map_i.shape[-1]
dup_region_feature_map_i = region_feature_map_i.reshape(h, w, c).permute(2, 0, 1)
dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(non_zero_pos.shape[0], 1, 1, 1)
# [num_mask, C, H, W] x [num_mask, num_sample_point(padded), 2] -> [num_mask, C, num_sample_point(padded)]
# F.grid_sample doesn't support BF16. Need to tranform into float32 then transform back.
dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype)
# pdb.set_trace()
region_feature_i = point_sample(dup_region_feature_map_i_ori_type,
non_zero_pos.flip(dims=(2,)).type(original_dtype),
return_dtype,
align_corners=True
)
region_feature_i = region_feature_i.to(dup_region_feature_map_i.dtype)
# [num_mask, C]
region_feature_i = torch.stack([x[m].mean(dim=0) for x, m in zip(region_feature_i.transpose(1,2), non_zero_pos_mask)]).nan_to_num()
all_region_features.append(region_feature_i)
return all_region_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels,
images, image_sizes=None, region_masks=None
):
if region_masks is not None:
region_flag = True
else:
region_flag = False
region_geo_sampler = region_flag and getattr(self.config, 'region_geo_sampler', False)
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
concat_images = torch.cat([image for image in images], dim=0)
raw_image_features, image_features, region_feature_map = self.encode_images(concat_images, region_flag=region_flag, region_geo_sampler=region_geo_sampler)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
if region_flag:
region_feature_maps = torch.split(region_feature_map, split_sizes, dim=0) # (#images, #patches, h*w, c)
# ======== This is for only taking the global image feature map for referring ======
# region_feature_map = torch.split(region_feature_map, split_sizes, dim=0)
# first_region_feature_map = [x[0:1] for x in region_feature_map]
# region_feature_map = torch.cat(first_region_feature_map, dim=0)
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square_nocrop')
if mm_patch_merge_type == 'flat':
image_features = [x.flatten(0, 1) for x in image_features]
# TODO: here we use the first feature map default for each batch (global feaure map) for referring
first_region_feature_map = [x[0:1] for x in region_feature_map]
region_feature_map = torch.cat(first_region_feature_map, dim=0) # (#images, h, w, c)
elif mm_patch_merge_type.startswith('spatial'):
new_image_features = []
new_region_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if region_flag:
cur_region_feature_map = region_feature_maps[image_idx] # (#patches, h*w, c)
cur_region_feature_map = cur_region_feature_map.view(cur_region_feature_map.shape[0], height, width, cur_region_feature_map.shape[-1]) # (#patches, h, w, c)
base_region_feature = cur_region_feature_map[0]
region_feature = cur_region_feature_map[1:]
# pdb.set_trace()
if image_aspect_ratio == 'anyres':
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
if region_flag:
region_feature = region_feature.view(num_patch_height, num_patch_width, height, width, -1)
else:
raise NotImplementedError
if 'unpad' in mm_patch_merge_type:
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat((
image_feature,
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
), dim=-1)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.flatten(0, 3)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
if region_flag:
region_feature = region_feature.permute(0, 2, 1, 3, 4).contiguous() # (patch_h, patch_w, h, w, c) -> (patch_h, h, patch_w, w, c)
region_feature = region_feature.flatten(0, 1).flatten(1, 2) # (patch_h, h, patch_w, w, c) -> (all_h, all_w, c)
# Tranform dtype, if using pytorch2.1+, no need to do this.
base_region_feature = base_region_feature.to(dtype=torch.float32)
base_region_feature_resized = F.interpolate(base_region_feature.unsqueeze(0).permute(0, 3, 1, 2), (region_feature.shape[0], region_feature.shape[1])) # (1, c, all_h, all_w)
base_region_feature_resized = base_region_feature_resized.to(region_feature.dtype)
base_region_feature_resized = base_region_feature_resized.squeeze(0).permute(1, 2, 0) # (all_h, all_w, c)
# === Add:
new_region_feature = base_region_feature_resized + region_feature
# === Concat: A bit lower, 1/3 more GPU memory consumption.
# new_region_feature = torch.cat((base_region_feature_resized, region_feature), dim=2) # (all_h, all_w, 2c)
else:
image_feature = image_feature[0]
if 'unpad' in mm_patch_merge_type:
image_feature = torch.cat((
image_feature,
self.model.image_newline[None].to(image_feature.device)
), dim=0)
if region_flag:
new_region_feature = region_feature_maps[image_idx][0] # (h, w, c)
new_image_features.append(image_feature)
if region_flag:
new_region_features.append(new_region_feature)
# pdb.set_trace()
image_features = new_image_features
if region_flag:
# region_feature_map = torch.stack(new_region_features, dim=0) # (#images, h, w, c or 2c)
region_feature_map = new_region_features
# pdb.set_trace()
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
raw_image_features, image_features, region_feature_map = self.encode_images(images, region_flag=region_flag, region_geo_sampler=region_geo_sampler)
if region_flag:
assert len(region_masks) == len(input_ids)
for img_idx, (cur_input_id, cur_region_mask) in enumerate(zip(input_ids, region_masks)):
cur_region_token_num = (cur_input_id == self.config.im_region_fea_token).sum()
if cur_region_token_num != len(cur_region_mask):
print('Found regions cropped because of text beyond max_len, removed them.')
region_masks[img_idx] = cur_region_mask[:cur_region_token_num]
# dump_region_mask = torch.zeros(100, 100).to(device='cuda')
dump_region_mask = torch.zeros(100, 100, device='cuda')
dump_region_mask[10:20, 10:20] = 1
dump_region_masks = [[dump_region_mask.clone()]]
for _ in range(len(region_feature_map)-1):
dump_region_masks.append([])
if region_geo_sampler:
if type(image_features) is list:
region_features = self.get_model().region_geo_sampler(region_feature_map, region_masks,
original_dtype=raw_image_features.dtype,
return_dtype=image_features[0].dtype)
dump_region_features = self.get_model().region_geo_sampler(region_feature_map, dump_region_masks,
original_dtype=raw_image_features.dtype,
return_dtype=image_features[0].dtype)
else:
region_features = self.get_model().region_geo_sampler(region_feature_map, region_masks,
original_dtype=raw_image_features.dtype,
return_dtype=image_features.dtype)
dump_region_features = self.get_model().region_geo_sampler(region_feature_map, dump_region_masks,
original_dtype=raw_image_features.dtype,
return_dtype=image_features.dtype)
else:
if type(image_features) is list:
region_features = self.extract_region_feature(region_feature_map, region_masks,
original_dtype=raw_image_features.dtype,
return_dtype=image_features[0].dtype)
dump_region_features = self.extract_region_feature(region_feature_map, dump_region_masks,
original_dtype=raw_image_features.dtype,
return_dtype=image_features[0].dtype)
else:
region_features = self.extract_region_feature(region_feature_map, region_masks,
original_dtype=raw_image_features.dtype,
return_dtype=image_features.dtype)
dump_region_features = self.extract_region_feature(region_feature_map, dump_region_masks,
original_dtype=raw_image_features.dtype,
return_dtype=image_features.dtype)
# assert len(dump_region_features) == 1
assert len([df for df in dump_region_features if df is not None]) == 1
assert len(dump_region_features[0]) == 1
assert len(region_features) == len(input_ids)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_id_with_im = []
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
assert len(cur_input_ids_noim) == len(cur_input_embeds_no_im)
for i in range(num_images + 1):
cur_input_id_with_im.append(cur_input_ids_noim[i])
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_input_id_with_im.append(torch.full((cur_image_features.shape[0],), IMAGE_TOKEN_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
cur_input_id_with_im = torch.cat(cur_input_id_with_im)
assert len(cur_input_id_with_im) == len(cur_new_input_embeds)
# Add region feature into text feature embeddings.
# Currently only support one image in each input.
assert batch_idx+1 == cur_image_idx
if region_flag and region_features[batch_idx] is not None:
region_embs = torch.zeros_like(cur_new_input_embeds)
region_replace_mask = (cur_input_id_with_im == self.config.im_region_fea_token)
# region_embs[region_replace_mask] = region_features[batch_idx].to(cur_new_input_embeds.dtype)
if len(region_embs[region_replace_mask]) != len(region_features[batch_idx]):
# ("Found a region cropped in text")
region_embs[region_replace_mask] = region_features[batch_idx][:len(region_embs[region_replace_mask])].to(cur_new_input_embeds.dtype)
else:
region_embs[region_replace_mask] = region_features[batch_idx].to(cur_new_input_embeds.dtype)
cur_new_input_embeds = cur_new_input_embeds * (~region_replace_mask).to(cur_new_input_embeds.dtype)[:, None] + region_embs
else:
if hasattr(self.config, 'im_region_fea_token'):
assert (cur_input_id_with_im == self.config.im_region_fea_token).sum() == 0
# Add dump region feature to input embedding, to make sure the gradient for region sampler always exist when open region_flag.
if region_flag:
# cur_new_input_embeds[0] = cur_new_input_embeds[0] + 0 * dump_region_features[0, 0].to(cur_new_input_embeds.dtype)
cur_new_input_embeds[0] = cur_new_input_embeds[0] + 0.0 * dump_region_features[0][0].to(cur_new_input_embeds.dtype)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer, add_region_feature=False):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if add_region_feature:
region_token_id = tokenizer.convert_tokens_to_ids([DEFAULT_REGION_FEA_TOKEN])[0]
# If region_token doesn't exist, add it.
if region_token_id == tokenizer.unk_token_id:
num_region_fea_tokens = tokenizer.add_tokens([DEFAULT_REGION_FEA_TOKEN], special_tokens=True)
self.config.im_region_fea_token = tokenizer.convert_tokens_to_ids([DEFAULT_REGION_FEA_TOKEN])[0]
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if add_region_feature:
num_new_tokens = num_new_tokens + num_region_fea_tokens
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False