File size: 5,682 Bytes
59524ac
 
 
d347b1f
59524ac
 
d347b1f
 
 
 
59524ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d347b1f
59524ac
 
 
d347b1f
59524ac
 
d347b1f
 
59524ac
 
 
 
d347b1f
59524ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d347b1f
 
 
59524ac
d347b1f
59524ac
 
 
d347b1f
59524ac
 
d347b1f
 
 
 
 
59524ac
d347b1f
 
 
 
59524ac
 
 
 
 
 
 
 
d347b1f
59524ac
 
 
d347b1f
59524ac
 
 
 
 
 
 
 
 
 
 
 
d347b1f
 
59524ac
 
 
6e3e9da
 
59524ac
 
 
 
 
d347b1f
59524ac
 
 
 
 
 
 
 
 
 
d347b1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from PIL import Image
from conversation import conv_templates
from builder import load_pretrained_model  # Assuming this is your custom model loader
from functools import partial
import numpy as np
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"

# define the task categories
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']

# function to generate the mask
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
    """
    Generates a region mask based on provided coordinates.
    Handles both point and box input.
    """
    if mask is not None:
        assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
    coor_mask = np.zeros((raw_w, raw_h))

    # if it's a point (2 coordinates)
    if len(coor) == 2:
        span = 5  # Define the span for the point
        x_min = max(0, coor[0] - span)
        x_max = min(raw_w, coor[0] + span + 1)
        y_min = max(0, coor[1] - span)
        y_max = min(raw_h, coor[1] + span + 1)
        coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
        assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"

    # if it's a box (4 coordinates)
    elif len(coor) == 4:
        coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
        if mask is not None:
            coor_mask = coor_mask * mask

    # convert to torch tensor and ensure it contains non-zero values
    coor_mask = torch.from_numpy(coor_mask)
    assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("


    return coor_mask


def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_llama", conv_mode="ferret_llama_3", add_region_feature=False):
    img = Image.open(image_path).convert('RGB')

    # this loads the model, image processor and tokenizer
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
    # define the image size required by clip
    image_size = {"height": 336, "width": 336}

    # process the image
    image_tensor = image_processor.preprocess(
        img,
        return_tensors='pt',
        do_resize=True,
        do_center_crop=False,
        size=(image_size['height'], image_size['width'])
    )['pixel_values'][0].unsqueeze(0)

    image_tensor = image_tensor.half().cuda()

    # generate the prompt per template requirement
    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], prompt)
    conv.append_message(conv.roles[1], None)
    prompt_input = conv.get_prompt()
    
    # add the special tokens
    prompt_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + prompt_input

    

    # region mask logic (if region is provided)
    region_masks = None
    if add_region_feature and region is not None:
        raw_w, raw_h = img.size
        region_masks = generate_mask_for_feature(region, raw_w, raw_h).unsqueeze(0).cuda().half()
        region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]]
        prompt_input = prompt_input.replace("<bbox_location0>", f"[{region[0]}, {region[1]}, {region[2]}, {region[3]}] {DEFAULT_REGION_FEA_TOKEN}")
        
    # tokenize prompt
    # input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()

    inputs = tokenizer(prompt_input, return_tensors='pt', padding=True)
    input_ids = inputs['input_ids'].cuda()
    attention_mask = inputs['attention_mask'].cuda() 
        
    # generate model output
    with torch.inference_mode():
        # Use region_masks in model's forward call
        model.orig_forward = model.forward
        model.forward = partial(
            model.orig_forward,
            region_masks=region_masks
        )
        # explcit add of attention mask
        output_ids = model.generate(
            input_ids,
            images=image_tensor,
            attention_mask=attention_mask, 
            max_new_tokens=1024,
            num_beams=1,
            region_masks=region_masks,  # pass the region mask to the model
            image_sizes=[img.size]
        )
        model.forward = model.orig_forward

    # we decode the output
    output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
    return output_text.strip()

# We also define a task-specific inference function
def infer_ui_task(image_path, prompt, model_path, task, region=None, add_region_feature=False):
    # region = torch.tensor(region).cuda()
    """
    Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
    """
    if region is not None:
        add_region_feature=True
    if task in box_in_tasks and region is None:
        raise ValueError(f"Task {task} requires a bounding box region.")
    
    if task in box_in_tasks:
        print(f"Processing {task} with bounding box region.")
        return infer_single_prompt(image_path, prompt, model_path, region, add_region_feature=add_region_feature)
    
    elif task in box_out_tasks:
        print(f"Processing {task} without bounding box region.")
        return infer_single_prompt(image_path, prompt, model_path)
    
    elif task in no_box_tasks:
        print(f"Processing {task} without image or bounding box.")
        return infer_single_prompt(image_path, prompt, model_path)
    
    else:
        raise ValueError(f"Unknown task type: {task}")