jadechoghari
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -8,97 +8,156 @@ library_name: transformers
|
|
8 |
|
9 |
Please download and save `builder.py`, `conversation.py` locally.
|
10 |
|
11 |
-
### Basic Text Generation
|
12 |
-
```python
|
13 |
-
import torch
|
14 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
-
|
16 |
-
# load the model and tokenizer
|
17 |
-
model_name = "jadechoghari/ferret-gemma"
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
20 |
-
|
21 |
-
# give input text
|
22 |
-
input_text = "The United States of America is a country situated on earth"
|
23 |
-
|
24 |
-
# tokenize the input text
|
25 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
-
|
27 |
-
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
-
|
29 |
-
output = model.generate(inputs['input_ids'], max_length=50, num_return_sequences=1)
|
30 |
-
|
31 |
-
# decode and print the output
|
32 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
33 |
-
print(generated_text)
|
34 |
-
```
|
35 |
-
|
36 |
-
### Image and Text Generation
|
37 |
```python
|
38 |
import torch
|
39 |
from PIL import Image
|
40 |
from conversation import conv_templates
|
41 |
-
from builder import load_pretrained_model # custom model loader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
img = Image.open(image_path).convert('RGB')
|
46 |
-
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "ferret_gemma")
|
47 |
-
image_tensor = image_processor.preprocess(img, return_tensors='pt', size=(336, 336))['pixel_values'][0].unsqueeze(0).half()
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
conv.append_message(conv.roles[0], f"Image and prompt: {prompt}")
|
52 |
-
input_ids = tokenizer(conv.get_prompt(), return_tensors='pt')['input_ids'].cuda()
|
53 |
-
|
54 |
-
image_tensor = image_tensor.cuda()
|
55 |
-
|
56 |
-
# generate text output
|
57 |
-
with torch.inference_mode():
|
58 |
-
output_ids = model.generate(input_ids, images=image_tensor, max_new_tokens=1024)
|
59 |
-
|
60 |
-
# decode the output
|
61 |
-
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
62 |
-
return output_text.strip()
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
print(result)
|
67 |
-
```
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
def generate_mask_for_feature(coor, img_w, img_h):
|
78 |
-
coor_mask = torch.zeros((img_w, img_h))
|
79 |
-
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
|
80 |
-
return coor_mask
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
-
|
|
|
88 |
|
89 |
-
#
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
# generate output
|
93 |
with torch.inference_mode():
|
|
|
94 |
model.orig_forward = model.forward
|
95 |
-
model.forward = partial(
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
return output_text.strip()
|
|
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
```
|
|
|
8 |
|
9 |
Please download and save `builder.py`, `conversation.py` locally.
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
```python
|
12 |
import torch
|
13 |
from PIL import Image
|
14 |
from conversation import conv_templates
|
15 |
+
from builder import load_pretrained_model # Assuming this is your custom model loader
|
16 |
+
from functools import partial
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
# define the task categories
|
20 |
+
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
|
21 |
+
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
|
22 |
+
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
|
23 |
+
|
24 |
+
# function to generate the mask
|
25 |
+
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
|
26 |
+
"""
|
27 |
+
Generates a region mask based on provided coordinates.
|
28 |
+
Handles both point and box input.
|
29 |
+
"""
|
30 |
+
if mask is not None:
|
31 |
+
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
|
32 |
+
coor_mask = np.zeros((raw_w, raw_h))
|
33 |
+
|
34 |
+
# if it's a point (2 coordinates)
|
35 |
+
if len(coor) == 2:
|
36 |
+
span = 5 # Define the span for the point
|
37 |
+
x_min = max(0, coor[0] - span)
|
38 |
+
x_max = min(raw_w, coor[0] + span + 1)
|
39 |
+
y_min = max(0, coor[1] - span)
|
40 |
+
y_max = min(raw_h, coor[1] + span + 1)
|
41 |
+
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
|
42 |
+
assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
|
43 |
+
|
44 |
+
# if it's a box (4 coordinates)
|
45 |
+
elif len(coor) == 4:
|
46 |
+
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
|
47 |
+
if mask is not None:
|
48 |
+
coor_mask = coor_mask * mask
|
49 |
+
|
50 |
+
# Convert to torch tensor and ensure it contains non-zero values
|
51 |
+
coor_mask = torch.from_numpy(coor_mask)
|
52 |
+
assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("
|
53 |
|
54 |
+
return coor_mask
|
55 |
+
```
|
56 |
+
### Now, define the infer function
|
57 |
+
```python
|
58 |
+
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct"):
|
59 |
img = Image.open(image_path).convert('RGB')
|
|
|
|
|
60 |
|
61 |
+
# this loads the model, image processor and tokenizer
|
62 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# define the image size (e.g., 224x224 or 336x336)
|
65 |
+
image_size = {"height": 336, "width": 336}
|
|
|
|
|
66 |
|
67 |
+
# process the image
|
68 |
+
image_tensor = image_processor.preprocess(
|
69 |
+
img,
|
70 |
+
return_tensors='pt',
|
71 |
+
do_resize=True,
|
72 |
+
do_center_crop=False,
|
73 |
+
size=(image_size['height'], image_size['width'])
|
74 |
+
)['pixel_values'][0].unsqueeze(0)
|
75 |
|
76 |
+
image_tensor = image_tensor.half().cuda()
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# generate the prompt per template requirement
|
79 |
+
conv = conv_templates[conv_mode].copy()
|
80 |
+
conv.append_message(conv.roles[0], prompt)
|
81 |
+
conv.append_message(conv.roles[1], None)
|
82 |
+
prompt_input = conv.get_prompt()
|
83 |
|
84 |
+
# tokenize prompt
|
85 |
+
input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
|
86 |
|
87 |
+
# region mask logic (if region is provided)
|
88 |
+
region_masks = None
|
89 |
+
if region is not None:
|
90 |
+
raw_w, raw_h = img.size
|
91 |
+
region_masks = generate_mask_for_feature(region, raw_w, raw_h).unsqueeze(0).cuda().half()
|
92 |
+
region_masks = [[region_masks]] # Wrap the mask in lists as expected by the model
|
93 |
|
94 |
+
# generate model output
|
95 |
with torch.inference_mode():
|
96 |
+
# Use region_masks in model's forward call
|
97 |
model.orig_forward = model.forward
|
98 |
+
model.forward = partial(
|
99 |
+
model.orig_forward,
|
100 |
+
region_masks=region_masks
|
101 |
+
)
|
102 |
+
output_ids = model.generate(
|
103 |
+
input_ids,
|
104 |
+
images=image_tensor,
|
105 |
+
max_new_tokens=1024,
|
106 |
+
num_beams=1,
|
107 |
+
region_masks=region_masks, # pass the region mask to the model
|
108 |
+
image_sizes=[img.size]
|
109 |
+
)
|
110 |
+
model.forward = model.orig_forward
|
111 |
+
|
112 |
+
# we decode the output
|
113 |
+
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
114 |
return output_text.strip()
|
115 |
+
```
|
116 |
|
117 |
+
# We also define a task-specific inference function
|
118 |
+
```python
|
119 |
+
def infer_ui_task(image_path, prompt, model_path, task, region=None):
|
120 |
+
"""
|
121 |
+
Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
|
122 |
+
"""
|
123 |
+
if task in box_in_tasks and region is None:
|
124 |
+
raise ValueError(f"Task {task} requires a bounding box region.")
|
125 |
+
|
126 |
+
if task in box_in_tasks:
|
127 |
+
print(f"Processing {task} with bounding box region.")
|
128 |
+
return infer_single_prompt(image_path, prompt, model_path, region)
|
129 |
+
|
130 |
+
elif task in box_out_tasks:
|
131 |
+
print(f"Processing {task} without bounding box region.")
|
132 |
+
return infer_single_prompt(image_path, prompt, model_path)
|
133 |
+
|
134 |
+
elif task in no_box_tasks:
|
135 |
+
print(f"Processing {task} without image or bounding box.")
|
136 |
+
return infer_single_prompt(image_path, prompt, model_path)
|
137 |
+
|
138 |
+
else:
|
139 |
+
raise ValueError(f"Unknown task type: {task}")
|
140 |
+
```
|
141 |
+
|
142 |
+
### Usage:
|
143 |
+
```python
|
144 |
+
# Example image and model paths
|
145 |
+
image_path = 'image.jpg'
|
146 |
+
model_path = 'jadechoghari/ferret-gemma'
|
147 |
+
|
148 |
+
# Task requiring bounding box
|
149 |
+
task = 'widgetcaptions'
|
150 |
+
region = (50, 50, 200, 200)
|
151 |
+
result = infer_ui_task(image_path, "Describe the contents of the box.", model_path, task, region=region)
|
152 |
+
print("Result:", result)
|
153 |
+
|
154 |
+
# Task not requiring bounding box
|
155 |
+
task = 'conversation_interaction'
|
156 |
+
result = infer_ui_task(image_path, "How do I navigate to the Games tab?", model_path, task)
|
157 |
+
print("Result:", result)
|
158 |
+
|
159 |
+
# Task with no image processing
|
160 |
+
task = 'detailed_description'
|
161 |
+
result = infer_ui_task(image_path, "Please describe the screen in detail.", model_path, task)
|
162 |
+
print("Result:", result)
|
163 |
```
|