jackoyoungblood
commited on
Commit
·
df709d7
1
Parent(s):
33d41e6
Initial commit
Browse files- .gitattributes +1 -0
- README.md +67 -0
- args.yml +75 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- qrdqn-CartPole-v1.zip +3 -0
- qrdqn-CartPole-v1/_stable_baselines3_version +1 -0
- qrdqn-CartPole-v1/data +127 -0
- qrdqn-CartPole-v1/policy.optimizer.pth +3 -0
- qrdqn-CartPole-v1/policy.pth +3 -0
- qrdqn-CartPole-v1/pytorch_variables.pth +3 -0
- qrdqn-CartPole-v1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: QRDQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 500.00 +/- 0.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: CartPole-v1
|
20 |
+
type: CartPole-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **QRDQN** Agent playing **CartPole-v1**
|
24 |
+
This is a trained model of a **QRDQN** agent playing **CartPole-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo qrdqn --env CartPole-v1 -orga jackoyoungblood -f logs/
|
41 |
+
python enjoy.py --algo qrdqn --env CartPole-v1 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo qrdqn --env CartPole-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo qrdqn --env CartPole-v1 -f logs/ -orga jackoyoungblood
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 64),
|
54 |
+
('buffer_size', 100000),
|
55 |
+
('exploration_final_eps', 0.04),
|
56 |
+
('exploration_fraction', 0.16),
|
57 |
+
('gamma', 0.99),
|
58 |
+
('gradient_steps', 128),
|
59 |
+
('learning_rate', 0.0023),
|
60 |
+
('learning_starts', 1000),
|
61 |
+
('n_timesteps', 50000.0),
|
62 |
+
('policy', 'MlpPolicy'),
|
63 |
+
('policy_kwargs', 'dict(net_arch=[256, 256], n_quantiles=10)'),
|
64 |
+
('target_update_interval', 10),
|
65 |
+
('train_freq', 256),
|
66 |
+
('normalize', False)])
|
67 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- qrdqn
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- CartPole-v1
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs/
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - pruner
|
45 |
+
- median
|
46 |
+
- - sampler
|
47 |
+
- tpe
|
48 |
+
- - save_freq
|
49 |
+
- -1
|
50 |
+
- - save_replay_buffer
|
51 |
+
- false
|
52 |
+
- - seed
|
53 |
+
- 954031387
|
54 |
+
- - storage
|
55 |
+
- null
|
56 |
+
- - study_name
|
57 |
+
- null
|
58 |
+
- - tensorboard_log
|
59 |
+
- ''
|
60 |
+
- - track
|
61 |
+
- false
|
62 |
+
- - trained_agent
|
63 |
+
- ''
|
64 |
+
- - truncate_last_trajectory
|
65 |
+
- true
|
66 |
+
- - uuid
|
67 |
+
- false
|
68 |
+
- - vec_env
|
69 |
+
- dummy
|
70 |
+
- - verbose
|
71 |
+
- 1
|
72 |
+
- - wandb_entity
|
73 |
+
- null
|
74 |
+
- - wandb_project_name
|
75 |
+
- sb3
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - buffer_size
|
5 |
+
- 100000
|
6 |
+
- - exploration_final_eps
|
7 |
+
- 0.04
|
8 |
+
- - exploration_fraction
|
9 |
+
- 0.16
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - gradient_steps
|
13 |
+
- 128
|
14 |
+
- - learning_rate
|
15 |
+
- 0.0023
|
16 |
+
- - learning_starts
|
17 |
+
- 1000
|
18 |
+
- - n_timesteps
|
19 |
+
- 50000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - policy_kwargs
|
23 |
+
- dict(net_arch=[256, 256], n_quantiles=10)
|
24 |
+
- - target_update_interval
|
25 |
+
- 10
|
26 |
+
- - train_freq
|
27 |
+
- 256
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
qrdqn-CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db4ad370ad82252ed7587db7eedd4a7dcb9298d5e75b648ddcb98d100f31e3f1
|
3 |
+
size 1184899
|
qrdqn-CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
qrdqn-CartPole-v1/data
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVLgAAAAAAAACMGnNiM19jb250cmliLnFyZHFuLnBvbGljaWVzlIwLUVJEUU5Qb2xpY3mUk5Qu",
|
5 |
+
"__module__": "sb3_contrib.qrdqn.policies",
|
6 |
+
"__doc__": "\n Policy class with quantile and target networks for QR-DQN.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param n_quantiles: Number of quantiles\n :param net_arch: The specification of the network architecture.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function QRDQNPolicy.__init__ at 0x7fc6de66dc20>",
|
8 |
+
"_build": "<function QRDQNPolicy._build at 0x7fc6de66dcb0>",
|
9 |
+
"make_quantile_net": "<function QRDQNPolicy.make_quantile_net at 0x7fc6de66dd40>",
|
10 |
+
"forward": "<function QRDQNPolicy.forward at 0x7fc6de66ddd0>",
|
11 |
+
"_predict": "<function QRDQNPolicy._predict at 0x7fc6de66de60>",
|
12 |
+
"_get_constructor_parameters": "<function QRDQNPolicy._get_constructor_parameters at 0x7fc6de66def0>",
|
13 |
+
"set_training_mode": "<function QRDQNPolicy.set_training_mode at 0x7fc6de66df80>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7fc6de66c1b0>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {
|
19 |
+
":type:": "<class 'dict'>",
|
20 |
+
":serialized:": "gASVfQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAWWMC25fcXVhbnRpbGVzlEsKjA9vcHRpbWl6ZXJfY2xhc3OUjBB0b3JjaC5vcHRpbS5hZGFtlIwEQWRhbZSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lIwDZXBzlEc/JHrhR64Ue3N1Lg==",
|
21 |
+
"net_arch": [
|
22 |
+
256,
|
23 |
+
256
|
24 |
+
],
|
25 |
+
"n_quantiles": 10,
|
26 |
+
"optimizer_class": "<class 'torch.optim.adam.Adam'>",
|
27 |
+
"optimizer_kwargs": {
|
28 |
+
"eps": 0.00015625
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"observation_space": {
|
32 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
33 |
+
":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEJqZmcD//3//UHfWvv//f/+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQmpmZQP//f39Qd9Y+//9/f5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
34 |
+
"dtype": "float32",
|
35 |
+
"_shape": [
|
36 |
+
4
|
37 |
+
],
|
38 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
39 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
40 |
+
"bounded_below": "[ True True True True]",
|
41 |
+
"bounded_above": "[ True True True True]",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"action_space": {
|
45 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
46 |
+
":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
47 |
+
"n": 2,
|
48 |
+
"_shape": [],
|
49 |
+
"dtype": "int64",
|
50 |
+
"_np_random": "RandomState(MT19937)"
|
51 |
+
},
|
52 |
+
"n_envs": 1,
|
53 |
+
"num_timesteps": 50176,
|
54 |
+
"_total_timesteps": 50000,
|
55 |
+
"_num_timesteps_at_start": 0,
|
56 |
+
"seed": 0,
|
57 |
+
"action_noise": null,
|
58 |
+
"start_time": 1660940826.4835405,
|
59 |
+
"learning_rate": {
|
60 |
+
":type:": "<class 'function'>",
|
61 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
62 |
+
},
|
63 |
+
"tensorboard_log": null,
|
64 |
+
"lr_schedule": {
|
65 |
+
":type:": "<class 'function'>",
|
66 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP2LXcxj8UEiFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
67 |
+
},
|
68 |
+
"_last_obs": null,
|
69 |
+
"_last_episode_starts": {
|
70 |
+
":type:": "<class 'numpy.ndarray'>",
|
71 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
72 |
+
},
|
73 |
+
"_last_original_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVmgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLBIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMQABwHP0n5Z74cmd02VAuePpR0lGIu"
|
76 |
+
},
|
77 |
+
"_episode_num": 329,
|
78 |
+
"use_sde": false,
|
79 |
+
"sde_sample_freq": -1,
|
80 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
81 |
+
"ep_info_buffer": {
|
82 |
+
":type:": "<class 'collections.deque'>",
|
83 |
+
":serialized:": "gASVHwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFnAAAAAAACMAWyUS2eMAXSUR0A+q/LDAJswdX2UKGgGR0BcwAAAAAAAaAdLc2gIR0A/DrGR3eN2dX2UKGgGR0BlQAAAAAAAaAdLqmgIR0A/LwzLwF1TdX2UKGgGR0Bp4AAAAAAAaAdLz2gIR0A/pJrcj7hvdX2UKGgGR0BywAAAAAAAaAdNLAFoCEdAQBQrjHXEqHV9lChoBkdAYWAAAAAAAGgHS4toCEdAQEhcxCY1HnV9lChoBkdAXAAAAAAAAGgHS3BoCEdAQFLFhoduHnV9lChoBkdAZiAAAAAAAGgHS7FoCEdAQIuRaHKwIXV9lChoBkdAVoAAAAAAAGgHS1poCEdAQJOaQV9F4XV9lChoBkdAbuAAAAAAAGgHS/doCEdAQNIjIJZ4fXV9lChoBkdAXQAAAAAAAGgHS3RoCEdAQQOZLIxQBXV9lChoBkdAXIAAAAAAAGgHS3JoCEdAQQ47aIvalHV9lChoBkdAXEAAAAAAAGgHS3FoCEdAQUB8IAwPAnV9lChoBkdAdxAAAAAAAGgHTXEBaAhHQEGIR9PUKAt1fZQoaAZHQGpgAAAAAABoB0vTaAhHQEHDM9r433p1fZQoaAZHQGogAAAAAABoB0vRaAhHQEIO593KSxJ1fZQoaAZHQGIgAAAAAABoB0uRaAhHQEIh7MxGlRB1fZQoaAZHQHFwAAAAAABoB00XAWgIR0BCl7X6InBtdX2UKGgGR0BwMAAAAAAAaAdNAwFoCEdAQtXXd0q6OHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEMrHfdhy811fZQoaAZHQH9AAAAAAABoB030AWgIR0BDpyDqW1MNdX2UKGgGR0B4kAAAAAAAaAdNiQFoCEdARBguEmICVHV9lChoBkdAWQAAAAAAAGgHS2RoCEdARCE495hScnV9lChoBkdAYOAAAAAAAGgHS4doCEdARFXx8UmD2HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQETRjAi3XqZ1fZQoaAZHQGJAAAAAAABoB0uSaAhHQETetQKrq+t1fZQoaAZHQH9AAAAAAABoB030AWgIR0BFWZggHNX6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdARdmY4Qz1snV9lChoBkdAcgAAAAAAAGgHTSABaAhHQEYZ7Kq4pc51fZQoaAZHQH9AAAAAAABoB030AWgIR0BGliBf8dgfdX2UKGgGR0BfQAAAAAAAaAdLfWgIR0BGySIpH7P6dX2UKGgGR0BgQAAAAAAAaAdLgmgIR0BG1PUrkKeDdX2UKGgGR0BlIAAAAAAAaAdLqWgIR0BHC2ZAprk9dX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BHDLhJiAlOdX2UKGgGR0BkwAAAAAAAaAdLpmgIR0BHQ2THKfWddX2UKGgGR0BrQAAAAAAAaAdL2mgIR0BHfeg13t8edX2UKGgGR0BiIAAAAAAAaAdLkWgIR0BHivhhpg1FdX2UKGgGR0BjIAAAAAAAaAdLmWgIR0BHv+5nUUfxdX2UKGgGR0B4MAAAAAAAaAdNgwFoCEdASKjBhx5s03V9lChoBkdAbgAAAAAAAGgHS/BoCEdASOkiB5HEuXV9lChoBkdAcCAAAAAAAGgHTQIBaAhHQEkodhiLEUF1fZQoaAZHQGogAAAAAABoB0vRaAhHQElkdJaq0dB1fZQoaAZHQGjgAAAAAABoB0vHaAhHQEmdsE7nxKB1fZQoaAZHQHFQAAAAAABoB00VAWgIR0BJ4AnDziCKdX2UKGgGR0BuAAAAAAAAaAdL8GgIR0BKHMCLdepodX2UKGgGR0B5kAAAAAAAaAdNmQFoCEdASmspPRArx3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEromFajesR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BLZgJTl1bJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAS+LxgAp8W3V9lChoBkdAehAAAAAAAGgHTaEBaAhHQExYxYaHbh51fZQoaAZHQHWgAAAAAABoB01aAWgIR0BMn57w8W9EdX2UKGgGR0BwoAAAAAAAaAdNCgFoCEdATOCHEdeY2XV9lChoBkdAcwAAAAAAAGgHTTABaAhHQE1Jh7Vrhzh1fZQoaAZHQHlwAAAAAABoB02XAWgIR0BNlZIg/1QJdX2UKGgGR0ByQAAAAAAAaAdNJAFoCEdATdazVtoBaXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE5RMK1G9Yh1fZQoaAZHQHcAAAAAAABoB01wAWgIR0BOvrhJiAlOdX2UKGgGR0B0gAAAAAAAaAdNSAFoCEdATwH974SHunV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE99lg+hXbN1fZQoaAZHQHPgAAAAAABoB00+AWgIR0BPweu/1xsEdX2UKGgGR0BvAAAAAAAAaAdL+GgIR0BQAFHvttygdX2UKGgGR0BxUAAAAAAAaAdNFQFoCEdAUCEfHPu5SXV9lChoBkdAbgAAAAAAAGgHS/BoCEdAUD/qoqCpWHV9lChoBkdAZYAAAAAAAGgHS6xoCEdAUFxwWFev6nV9lChoBkdAeCAAAAAAAGgHTYIBaAhHQFCBwFTvRZ51fZQoaAZHQHKAAAAAAABoB00oAWgIR0BQouGO+7DmdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUOBwS8J2MnV9lChoBkdAbWAAAAAAAGgHS+toCEdAUP7ijtXxOXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFE8nG8274B1fZQoaAZHQH9AAAAAAABoB030AWgIR0BRehZyMkyDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUbc176YVqXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFH1LjxTbWV1fZQoaAZHQHFwAAAAAABoB00XAWgIR0BSFZyMkyDadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUlMDifg75nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFKQnOB19v11fZQoaAZHQH9AAAAAAABoB030AWgIR0BSzqhDgIhRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUw0WN3np0XV9lChoBkdAdZAAAAAAAGgHTVkBaAhHQFMvic5Ke051fZQoaAZHQH9AAAAAAABoB030AWgIR0BTbGwNb1RMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAU6oVVPva13V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFPnpMYdhiN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BUJX5rP+n7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVGKuU2UB4nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFShH9m6Gxl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BU3vmYBvJjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVRypwS8J2XV9lChoBkdAacAAAAAAAGgHS85oCEdAVTlhOP/7znV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFV4za9K28Z1fZQoaAZHQH9AAAAAAABoB030AWgIR0BVtq64Ds+ndX2UKGgGR0BsgAAAAAAAaAdL5GgIR0BV1KvV3EAHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAViRB6a9bo3V9lChoBkdAY8AAAAAAAGgHS55oCEdAVi4/SpiqhnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFZ2e6qbSZ11fZQoaAZHQH9AAAAAAABoB030AWgIR0BWs4cinpB5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVvekXUH6dnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFdKbY9Pk7x1fZQoaAZHQH9AAAAAAABoB030AWgIR0BXjTmbLEDRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAV8tyfcvdunV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFgKBg/keZJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BYSFVHWjGldWUu"
|
84 |
+
},
|
85 |
+
"ep_success_buffer": {
|
86 |
+
":type:": "<class 'collections.deque'>",
|
87 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
88 |
+
},
|
89 |
+
"_n_updates": 24704,
|
90 |
+
"buffer_size": 1,
|
91 |
+
"batch_size": 64,
|
92 |
+
"learning_starts": 1000,
|
93 |
+
"tau": 1.0,
|
94 |
+
"gamma": 0.99,
|
95 |
+
"gradient_steps": 128,
|
96 |
+
"optimize_memory_usage": false,
|
97 |
+
"replay_buffer_class": {
|
98 |
+
":type:": "<class 'abc.ABCMeta'>",
|
99 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
100 |
+
"__module__": "stable_baselines3.common.buffers",
|
101 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
102 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fc6deec47a0>",
|
103 |
+
"add": "<function ReplayBuffer.add at 0x7fc6deec4830>",
|
104 |
+
"sample": "<function ReplayBuffer.sample at 0x7fc6deeb1830>",
|
105 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fc6deeb18c0>",
|
106 |
+
"__abstractmethods__": "frozenset()",
|
107 |
+
"_abc_impl": "<_abc_data object at 0x7fc6def2c060>"
|
108 |
+
},
|
109 |
+
"replay_buffer_kwargs": {},
|
110 |
+
"train_freq": {
|
111 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
112 |
+
":serialized:": "gASVYgAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RNAAFoAIwSVHJhaW5GcmVxdWVuY3lVbml0lJOUjARzdGVwlIWUUpSGlIGULg=="
|
113 |
+
},
|
114 |
+
"actor": null,
|
115 |
+
"use_sde_at_warmup": false,
|
116 |
+
"exploration_initial_eps": 1.0,
|
117 |
+
"exploration_final_eps": 0.04,
|
118 |
+
"exploration_fraction": 0.16,
|
119 |
+
"target_update_interval": 10,
|
120 |
+
"max_grad_norm": null,
|
121 |
+
"exploration_rate": 0.04,
|
122 |
+
"exploration_schedule": {
|
123 |
+
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gASVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwRLE0MsZAF8ABgAiAFrBHIQiABTAIgCZAF8ABgAiACIAhgAFACIARsAFwBTAGQAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuNy9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuNy9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/pHrhR64Ue4WUUpRoN0c/xHrhR64Ue4WUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
125 |
+
},
|
126 |
+
"n_quantiles": 10
|
127 |
+
}
|
qrdqn-CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1c9cfd0bc1fb39a0d735743a13786de57552e69afb8985120d910888c86f455
|
3 |
+
size 582703
|
qrdqn-CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd0f70f89722c8f13cace188dc22bcefa3db7aca1405455ad1ff0f4617b17f42
|
3 |
+
size 582145
|
qrdqn-CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
qrdqn-CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5899f808360727250caae83207d3c8040dc1d274685a68b71bd844c916eef8bd
|
3 |
+
size 97148
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-19T20:33:08.288855"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6c0122d1e420041d390b18f6110986173c4dd19445396ffe0ba7cfda9de70e5
|
3 |
+
size 7624
|