CPALL-Stock-Trend-Prediction-category-sentiment-filter-2ndphase-Wangchanberta-APR-2
This model is a fine-tuned version of jab11769/CPALL-Stock-Trend-Prediction-category-sentiment-filter-1stphase-Wangchanberta-APR-2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2217
- Accuracy: 0.3726
- Precision: 0.3958
- Recall: 0.3726
- F1: 0.3749
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.2574 | 1.0 | 731 | 1.1491 | 0.2562 | 0.0657 | 0.2562 | 0.1046 |
1.1227 | 2.0 | 1462 | 1.0988 | 0.4008 | 0.4161 | 0.4008 | 0.4048 |
1.0686 | 3.0 | 2193 | 1.1409 | 0.3396 | 0.4271 | 0.3396 | 0.3180 |
1.0409 | 4.0 | 2924 | 1.1024 | 0.3989 | 0.4056 | 0.3989 | 0.4017 |
0.9948 | 5.0 | 3655 | 1.1379 | 0.3948 | 0.4033 | 0.3948 | 0.3929 |
0.9723 | 6.0 | 4386 | 1.1585 | 0.3945 | 0.3975 | 0.3945 | 0.3957 |
0.9104 | 7.0 | 5117 | 1.2217 | 0.3726 | 0.3958 | 0.3726 | 0.3749 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support