File size: 2,087 Bytes
9205e86 bb08969 7bc5a21 9205e86 dd397f0 9205e86 dd397f0 9205e86 dd397f0 9205e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
language:
- en
- it
- multilingual
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ccmatrix
model-index:
- name: t5-small-finetuned-en-to-it
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-en-to-it
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the ccmatrix dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.5524 | 1.0 | 750 | 2.2315 |
| 2.4839 | 2.0 | 1500 | 2.1932 |
| 2.4654 | 3.0 | 2250 | 2.1637 |
| 2.4001 | 4.0 | 3000 | 2.1352 |
| 2.3966 | 5.0 | 3750 | 2.1122 |
| 2.3537 | 6.0 | 4500 | 2.0921 |
| 2.3427 | 7.0 | 5250 | 2.0746 |
| 2.316 | 8.0 | 6000 | 2.0614 |
| 2.301 | 9.0 | 6750 | 2.0488 |
| 2.2813 | 10.0 | 7500 | 2.0403 |
| 2.2691 | 11.0 | 8250 | 2.0325 |
| 2.2561 | 12.0 | 9000 | 2.0265 |
| 2.258 | 13.0 | 9750 | 2.0217 |
| 2.2447 | 14.0 | 10500 | 2.0199 |
| 2.2432 | 15.0 | 11250 | 2.0188 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
|