retarfi
commited on
Commit
·
07526c2
1
Parent(s):
1513ca9
add model
Browse files- README.md +68 -0
- config.json +27 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
|
3 |
+
language: ja
|
4 |
+
|
5 |
+
license: cc-by-sa-4.0
|
6 |
+
|
7 |
+
datasets:
|
8 |
+
|
9 |
+
- wikipedia
|
10 |
+
|
11 |
+
widget:
|
12 |
+
|
13 |
+
- text: 東京大学で[MASK]の研究をしています。
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
# ELECTRA base Japanese generator
|
18 |
+
|
19 |
+
This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language.
|
20 |
+
|
21 |
+
The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0).
|
22 |
+
|
23 |
+
## Model architecture
|
24 |
+
|
25 |
+
The model architecture is the same as ELECTRA base in the [original ELECTRA implementation](https://github.com/google-research/electra); 12 layers, 256 dimensions of hidden states, and 4 attention heads.
|
26 |
+
|
27 |
+
## Training Data
|
28 |
+
|
29 |
+
The models are trained on the Japanese version of Wikipedia.
|
30 |
+
|
31 |
+
The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021.
|
32 |
+
|
33 |
+
The corpus file is 2.9GB, consisting of approximately 20M sentences.
|
34 |
+
|
35 |
+
## Tokenization
|
36 |
+
|
37 |
+
The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm.
|
38 |
+
|
39 |
+
The vocabulary size is 32768.
|
40 |
+
|
41 |
+
## Training
|
42 |
+
|
43 |
+
The models are trained with the same configuration as ELECTRA base in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555) except size; 512 tokens per instance, 256 instances per batch, and 766k training steps.
|
44 |
+
|
45 |
+
The size of the generator is the same of the discriminator.
|
46 |
+
|
47 |
+
## Citation
|
48 |
+
|
49 |
+
**There will be another paper for this pretrained model. Be sure to check here again when you cite.**
|
50 |
+
|
51 |
+
```
|
52 |
+
@inproceedings{bert_electra_japanese,
|
53 |
+
title = {Construction and Validation of a Pre-Trained Language Model
|
54 |
+
Using Financial Documents}
|
55 |
+
author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi},
|
56 |
+
month = {oct},
|
57 |
+
year = {2021},
|
58 |
+
booktitle = {"Proceedings of JSAI Special Interest Group on Financial Infomatics (SIG-FIN) 27"}
|
59 |
+
}
|
60 |
+
```
|
61 |
+
|
62 |
+
## Licenses
|
63 |
+
|
64 |
+
The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/).
|
65 |
+
|
66 |
+
## Acknowledgments
|
67 |
+
|
68 |
+
This work was supported by JSPS KAKENHI Grant Number JP21K12010.
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ElectraForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"embedding_size": 768,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 256,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 1024,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "electra",
|
15 |
+
"num_attention_heads": 4,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"summary_activation": "gelu",
|
21 |
+
"summary_last_dropout": 0.1,
|
22 |
+
"summary_type": "first",
|
23 |
+
"summary_use_proj": true,
|
24 |
+
"transformers_version": "4.7.0",
|
25 |
+
"type_vocab_size": 2,
|
26 |
+
"vocab_size": 32768
|
27 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c58bfa60829cdaa825662f71d565b1ff9fc964020fab94108cadebf82cf099b
|
3 |
+
size 141960100
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "do_lower_case": false, "do_word_tokenize": true, "do_subword_tokenize": true, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", "never_split": null, "mecab_kwargs": {"mecab_dic": "ipadic"}, "tokenize_chinese_chars": false}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|