docs
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: ja
|
3 |
+
license: cc-by-sa-4.0
|
4 |
+
library_name: transformers
|
5 |
+
datasets:
|
6 |
+
- cc100
|
7 |
+
- mc4
|
8 |
+
- oscar
|
9 |
+
- wikipedia
|
10 |
+
- izumi-lab/cc100-ja
|
11 |
+
- izumi-lab/mc4-ja-filter-ja-normal
|
12 |
+
- izumi-lab/oscar2301-ja-filter-ja-normal
|
13 |
+
- izumi-lab/wikipedia-ja-20230720
|
14 |
+
- izumi-lab/wikinews-ja-20230728
|
15 |
+
|
16 |
+
widget:
|
17 |
+
- text: 東京大学で[MASK]の研究をしています。
|
18 |
+
|
19 |
---
|
20 |
+
|
21 |
+
# DeBERTa V2 small Japanese
|
22 |
+
|
23 |
+
This is a [DeBERTaV2](https://github.com/microsoft/DeBERTa) model pretrained on Japanese texts.
|
24 |
+
The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/releases/tag/v2.2.1).
|
25 |
+
|
26 |
+
|
27 |
+
## How to use
|
28 |
+
|
29 |
+
You can use this model for masked language modeling as follows:
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("izumi-lab/deberta-v2-base-japanese")
|
34 |
+
model = AutoModelForMaskedLM.from_pretrained("izumi-lab/deberta-v2-base-japanese")
|
35 |
+
...
|
36 |
+
```
|
37 |
+
|
38 |
+
|
39 |
+
## Tokenization
|
40 |
+
|
41 |
+
The model uses a sentencepiece-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using [sentencepiece](https://github.com/google/sentencepiece).
|
42 |
+
|
43 |
+
|
44 |
+
## Training Data
|
45 |
+
|
46 |
+
We used the following corpora for pre-training:
|
47 |
+
|
48 |
+
- [Japanese portion of CC-100](https://huggingface.co/datasets/izumi-lab/cc100-ja)
|
49 |
+
- [Japanese portion of mC4](https://huggingface.co/datasets/izumi-lab/mc4-ja-filter-ja-normal)
|
50 |
+
- [Japanese portion of OSCAR2301](izumi-lab/oscar2301-ja-filter-ja-normal)
|
51 |
+
- [Japanese Wikipedia as of July 20, 2023](https://huggingface.co/datasets/izumi-lab/wikipedia-ja-20230720)
|
52 |
+
- [Japanese Wikinews as of July 28, 2023](https://huggingface.co/datasets/izumi-lab/wikinews-ja-20230728)
|
53 |
+
|
54 |
+
|
55 |
+
## Training Parameters
|
56 |
+
|
57 |
+
- learning_rate: 6e-4
|
58 |
+
- total_train_batch_size: 2,016
|
59 |
+
- max_seq_length: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
61 |
+
- lr_scheduler_type: linear schedule with warmup
|
62 |
+
- training_steps: 1,000,000
|
63 |
+
- warmup_steps: 100,000
|
64 |
+
- precision: BF16
|
65 |
+
|
66 |
+
|
67 |
+
## Fine-tuning on General NLU tasks
|
68 |
+
|
69 |
+
We evaluate our model with the average of five seeds.
|
70 |
+
|
71 |
+
|
72 |
+
| Model | JSTS | JNLI | JCommonsenseQA |
|
73 |
+
|---------------------------------------------------------------------------|------------------|-----------|----------------|
|
74 |
+
| | Pearson/Spearman | acc | acc |
|
75 |
+
| **DeBERTaV2 small** | **0.890/0.846** | **0.880** | **0.737** |
|
76 |
+
| [UTokyo BERT small](https://huggingface.co/izumi-lab/bert-small-japanese) | 0.889/0.841 | 0.841 | 0.715 |
|
77 |
+
|
78 |
+
|
79 |
+
## Citation
|
80 |
+
|
81 |
+
TBA
|
82 |
+
|
83 |
+
|
84 |
+
## Licenses
|
85 |
+
|
86 |
+
The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/).
|
87 |
+
|
88 |
+
|
89 |
+
## Acknowledgments
|
90 |
+
|
91 |
+
This work was supported in part by JSPS KAKENHI Grant Number JP21K12010, and the JST-Mirai Program Grant Number JPMJMI20B1, Japan.
|