File size: 2,480 Bytes
9638e7c 019277d 9638e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: gemma
base_model: google/gemma-2b-it
tags:
- generated_from_trainer
model-index:
- name: logs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# logs
This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6511
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.1035 | 0.08 | 112 | 3.1213 |
| 3.0698 | 0.17 | 224 | 3.0171 |
| 3.0451 | 0.25 | 336 | 2.9717 |
| 2.8939 | 0.33 | 448 | 2.9336 |
| 2.8892 | 0.42 | 560 | 2.9099 |
| 2.8566 | 0.5 | 672 | 2.8757 |
| 2.8654 | 0.58 | 784 | 2.8486 |
| 2.8261 | 0.67 | 896 | 2.8291 |
| 2.8868 | 0.75 | 1008 | 2.7998 |
| 2.819 | 0.84 | 1120 | 2.7781 |
| 2.8064 | 0.92 | 1232 | 2.7543 |
| 2.761 | 1.0 | 1344 | 2.7338 |
| 2.3883 | 1.09 | 1456 | 2.7416 |
| 2.3511 | 1.17 | 1568 | 2.7239 |
| 2.3174 | 1.25 | 1680 | 2.7140 |
| 2.3234 | 1.34 | 1792 | 2.7004 |
| 2.3364 | 1.42 | 1904 | 2.6826 |
| 2.3079 | 1.5 | 2016 | 2.6718 |
| 2.2965 | 1.59 | 2128 | 2.6649 |
| 2.2233 | 1.67 | 2240 | 2.6626 |
| 2.2199 | 1.75 | 2352 | 2.6590 |
| 2.3126 | 1.84 | 2464 | 2.6526 |
| 2.2602 | 1.92 | 2576 | 2.6513 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.0.0+cu117
- Datasets 2.16.0
- Tokenizers 0.15.0
|