irridileepkumar's picture
Upload 219 files
c4bfc74 verified
raw
history blame
80.9 kB
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = [
"get_chat_template",
"test_chat_templates",
"test_hf_gguf_equivalence",
"remove_special_tokens",
"to_sharegpt",
"standardize_sharegpt",
"apply_chat_template",
"train_on_responses_only",
"test_construct_chat_template",
]
from transformers import StoppingCriteria, StoppingCriteriaList
from torch import LongTensor, FloatTensor
from transformers.models.llama.modeling_llama import logger
from .save import patch_saving_functions
import os
import shutil
from .tokenizer_utils import *
from .models._utils import patch_tokenizer
import re
from unsloth_zoo.dataset_utils import (
train_on_responses_only,
)
CHAT_TEMPLATES = {}
DEFAULT_SYSTEM_MESSAGE = {}
# =========================================== Unsloth
# Unsloth efficient template leverages from Zephyr
unsloth_template = \
"{{ bos_token }}"\
"{% if messages[0]['role'] == 'system' %}"\
"{{ messages[0]['content'] + '\n' }}"\
"{% set loop_messages = messages[1:] %}"\
"{% else %}"\
"{{ '{system_message}' + '\n' }}"\
"{% set loop_messages = messages %}"\
"{% endif %}"\
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ '>>> User: ' + message['content'] + '\n' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ '>>> Assistant: ' + message['content'] + eos_token + '\n' }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '>>> Assistant: ' }}"\
"{% endif %}"
pass
unsloth_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}{{ .System }}
{{ end }}{{ if .Prompt }}>>> User: {{ .Prompt }}
{{ end }}>>> Assistant: {{ .Response }}{__EOS_TOKEN__}
"""
PARAMETER stop "{__EOS_TOKEN__}"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
SYSTEM """You are a helpful assistant to the user"""
'''
unsloth_eos_token = "eos_token"
CHAT_TEMPLATES["unsloth"] = (unsloth_template, unsloth_eos_token, False, unsloth_ollama,)
DEFAULT_SYSTEM_MESSAGE["unsloth"] = "You are a helpful assistant to the user"
pass
# =========================================== Zephyr
# Zephyr has no BOS!
zephyr_template = \
"{% for message in messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ '<|user|>\n' + message['content'] + eos_token + '\n' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ '<|assistant|>\n' + message['content'] + eos_token + '\n' }}"\
"{% else %}"\
"{{ '<|system|>\n' + message['content'] + eos_token + '\n' }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '<|assistant|>\n' }}"\
"{% endif %}"
pass
zephyr_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}<|system|>
{{ .System }}{__EOS_TOKEN__}
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}{__EOS_TOKEN__}
{{ end }}<|assistant|>
{{ .Response }}{__EOS_TOKEN__}
"""
PARAMETER stop "{__EOS_TOKEN__}"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
zephyr_eos_token = "eos_token"
CHAT_TEMPLATES["zephyr"] = (zephyr_template, zephyr_eos_token, False, zephyr_ollama,)
DEFAULT_SYSTEM_MESSAGE["zephyr"] = None # No system message in Zephyr
pass
# =========================================== ChatML
# ChatML has no BOS and not EOS! Rather <|im_start|> and <|im_end|> acts as BOS / EOS.
chatml_template = \
"{% for message in messages %}"\
"{% if message['role'] == 'user' %}"\
"{{'<|im_start|>user\n' + message['content'] + '<|im_end|>\n'}}"\
"{% elif message['role'] == 'assistant' %}"\
"{{'<|im_start|>assistant\n' + message['content'] + '<|im_end|>\n' }}"\
"{% else %}"\
"{{ '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '<|im_start|>assistant\n' }}"\
"{% endif %}"
pass
chatml_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
"""
PARAMETER stop "<|im_start|>"
PARAMETER stop "<|im_end|>"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
chatml_eos_token = "<|im_end|>"
CHAT_TEMPLATES["chatml"] = (chatml_template, chatml_eos_token, True, chatml_ollama,)
DEFAULT_SYSTEM_MESSAGE["chatml"] = None # No system message in ChatML
pass
# =========================================== Mistral-1
# Mistral Instruct doesn't allow system prompts, so we append it to the user message.
mistral_template = \
"{{ bos_token }}"\
"{% if messages[0]['role'] == 'system' %}"\
"{% if messages[1]['role'] == 'user' %}"\
"{{ '[INST] ' + messages[0]['content'] + ' ' + messages[1]['content'] + ' [/INST]' }}"\
"{% set loop_messages = messages[2:] %}"\
"{% else %}"\
"{{ '[INST] ' + messages[0]['content'] + ' [/INST]' }}"\
"{% set loop_messages = messages[1:] %}"\
"{% endif %}"\
"{% else %}"\
"{% set loop_messages = messages %}"\
"{% endif %}"\
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ '[INST] ' + message['content'] + ' [/INST]' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ message['content'] + eos_token }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"
pass
# Ollama from https://www.ollama.com/library/mistral
mistral_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """[INST] {{ if .System }}{{ .System }} {{ end }}{{ .Prompt }} [/INST]"""
PARAMETER stop "{__EOS_TOKEN__}"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
mistral_eos_token = "eos_token"
CHAT_TEMPLATES["mistral"] = (mistral_template, mistral_eos_token, False, mistral_ollama,)
DEFAULT_SYSTEM_MESSAGE["mistral"] = None # No system message in Mistral
pass
# =========================================== Llama-2
# Adds BOS to every convo! And weird <<SYS>> system messages.
llama_template = \
"{% if messages[0]['role'] == 'system' %}"\
"{% if messages[1]['role'] == 'user' %}"\
"{{ bos_token + '[INST] <<SYS>>\n' + messages[0]['content'] + '\n<</SYS>>\n\n' + messages[1]['content'] + ' [/INST]' }}"\
"{% set loop_messages = messages[2:] %}"\
"{% else %}"\
"{{ bos_token + '[INST] ' + messages[0]['content'] + ' [/INST]' }}"\
"{% set loop_messages = messages[1:] %}"\
"{% endif %}"\
"{% else %}"\
"{% set loop_messages = messages %}"\
"{% endif %}"\
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ bos_token + '[INST] ' + message['content'].strip() + ' [/INST]' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ ' ' + message['content'].strip() + ' ' + eos_token }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"
pass
# Ollama from https://www.ollama.com/library/llama3
llama_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """[INST] <<SYS>>{{ .System }}<</SYS>>
{{ .Prompt }} [/INST]"""
PARAMETER stop "{__EOS_TOKEN__}"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
llama_eos_token = "eos_token"
CHAT_TEMPLATES["llama"] = (llama_template, llama_eos_token, False, llama_ollama,)
DEFAULT_SYSTEM_MESSAGE["llama"] = None # No system message in Llama
pass
# =========================================== Vicuna
# https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md#prompt-template
vicuna_template = \
"{{ bos_token }}"\
"{% if messages[0]['role'] == 'system' %}"\
"{{ messages[0]['content'] + ' ' }}"\
"{% set loop_messages = messages[1:] %}"\
"{% else %}"\
"{{ '{system_message}' + ' ' }}"\
"{% set loop_messages = messages %}"\
"{% endif %}"\
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ 'USER: ' + message['content'] + ' ' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ 'ASSISTANT: ' + message['content'] + eos_token }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ 'ASSISTANT:' }}"\
"{% endif %}"
pass
# Ollama from https://www.ollama.com/library/vicuna
vicuna_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}{{ .System }} {{ end }}{{ if .Prompt }}USER: {{ .Prompt }} {{ end }}ASSISTANT: {{ .Response }} {__EOS_TOKEN__}"""
PARAMETER stop "{__EOS_TOKEN__}"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
vicuna_eos_token = "eos_token"
CHAT_TEMPLATES["vicuna"] = (vicuna_template, vicuna_eos_token, False, vicuna_ollama,)
DEFAULT_SYSTEM_MESSAGE["vicuna"] = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
pass
# =========================================== Vicuna Old
# https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md#prompt-template
vicuna_old_template = \
"{{ bos_token }}"\
"{% if messages[0]['role'] == 'system' %}"\
"{{ messages[0]['content'] + '\n' }}"\
"{% set loop_messages = messages[1:] %}"\
"{% else %}"\
"{{ '{system_message}' + '\n' }}"\
"{% set loop_messages = messages %}"\
"{% endif %}"\
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ '### Human: ' + message['content'] + '\n' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ '### Assistant: ' + message['content'] + eos_token + '\n' }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '### Assistant:' }}"\
"{% endif %}"
pass
vicuna_old_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}{{ .System }}
{{ end }}{{ if .Prompt }}### Human: {{ .Prompt }}
{{ end }}### Assistant: {{ .Response }}{__EOS_TOKEN__}
"""
PARAMETER stop "{__EOS_TOKEN__}"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
SYSTEM """A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions."""
'''
vicuna_old_eos_token = "eos_token"
CHAT_TEMPLATES["vicuna_old"] = (vicuna_old_template, vicuna_old_eos_token, False, vicuna_old_ollama,)
DEFAULT_SYSTEM_MESSAGE["vicuna_old"] = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human\\'s questions."
CHAT_TEMPLATES["vicuna old"] = CHAT_TEMPLATES["vicuna_old"]
DEFAULT_SYSTEM_MESSAGE["vicuna old"] = DEFAULT_SYSTEM_MESSAGE["vicuna_old"]
pass
# =========================================== Alpaca multi turn
# https://github.com/tatsu-lab/stanford_alpaca Changed for multi-turn convos
alpaca_template = \
"{{ bos_token }}"\
"{% if messages[0]['role'] == 'system' %}"\
"{{ messages[0]['content'] + '\n\n' }}"\
"{% set loop_messages = messages[1:] %}"\
"{% else %}"\
"{{ '{system_message}' + '\n\n' }}"\
"{% set loop_messages = messages %}"\
"{% endif %}"\
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ '### Instruction:\n' + message['content'] + '\n\n' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ '### Response:\n' + message['content'] + eos_token + '\n\n' }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '### Response:\n' }}"\
"{% endif %}"
pass
alpaca_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}{{ .System }}
{{ end }}{{ if .Prompt }}### Instruction:
{{ .Prompt }}{{ end }}
### Response:
{{ .Response }}{__EOS_TOKEN__}
"""
PARAMETER stop "{__EOS_TOKEN__}"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
SYSTEM """Below are some instructions that describe some tasks. Write responses that appropriately complete each request."""
'''
alpaca_eos_token = "eos_token"
CHAT_TEMPLATES["alpaca"] = (alpaca_template, alpaca_eos_token, False, alpaca_ollama,)
DEFAULT_SYSTEM_MESSAGE["alpaca"] = "Below are some instructions that describe some tasks. Write responses that appropriately complete each request."
pass
# =========================================== Gemma
# https://huggingface.co/google/gemma-7b-it
# Notice we must use |trim for lstrip and rstrip. <start_of_turn> maps to 106.
# <end_of_turn> maps to 107. user and model are normal 1 word tokens.
gemma_template = \
"{{ bos_token }}"\
"{% if messages[0]['role'] == 'system' %}"\
"{{'<start_of_turn>user\n' + messages[0]['content'] | trim + ' ' + messages[1]['content'] | trim + '<end_of_turn>\n'}}"\
"{% set messages = messages[2:] %}"\
"{% endif %}"\
"{% for message in messages %}"\
"{% if message['role'] == 'user' %}"\
"{{'<start_of_turn>user\n' + message['content'] | trim + '<end_of_turn>\n'}}"\
"{% elif message['role'] == 'assistant' %}"\
"{{'<start_of_turn>model\n' + message['content'] | trim + '<end_of_turn>\n' }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '<start_of_turn>model\n' }}"\
"{% endif %}"
pass
# Ollama from https://www.ollama.com/library/gemma
gemma_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """<start_of_turn>user
{{ if .System }}{{ .System }} {{ end }}{{ .Prompt }}<end_of_turn>
<start_of_turn>model
{{ .Response }}<end_of_turn>
"""
PARAMETER repeat_penalty 1
PARAMETER stop "<start_of_turn>"
PARAMETER stop "<end_of_turn>"
PARAMETER penalize_newline false
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
gemma_eos_token = "<end_of_turn>"
CHAT_TEMPLATES["gemma"] = (gemma_template, gemma_eos_token, True, gemma_ollama,)
DEFAULT_SYSTEM_MESSAGE["gemma"] = None # No system message in Gemma
pass
# =========================================== Gemma with ChatML instead
# We find using <eos> is still more appropriate!
gemma_chatml_template = "{{ bos_token }}" + chatml_template
pass
gemma_chatml_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
"""
PARAMETER repeat_penalty 1
PARAMETER stop "<|im_start|>"
PARAMETER stop "<|im_end|>"
PARAMETER penalize_newline false
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
gemma_chatml_eos_token = (
{"<start_of_turn>" : "<|im_start|>", "<eos>" : "<|im_end|>"},
"<|im_end|>",
)
CHAT_TEMPLATES["gemma_chatml"] = (gemma_chatml_template, gemma_chatml_eos_token, True, gemma_chatml_ollama,)
DEFAULT_SYSTEM_MESSAGE["gemma_chatml"] = None # No system message in Gemma
pass
# =========================================== Gemma 2
# Same as Gemma 1, but with sliding window attention!
# https://ollama.com/library/gemma2/blobs/6522ca797f47
gemma2_template = gemma_template
gemma2_ollama = gemma_ollama + "PARAMETER num_ctx 4096\n"
gemma2_eos_token = "<end_of_turn>"
CHAT_TEMPLATES["gemma2"] = (gemma2_template, gemma2_eos_token, True, gemma2_ollama,)
DEFAULT_SYSTEM_MESSAGE["gemma2"] = None # No system message in Gemma 2
# =========================================== Gemma 2 with ChatML instead
gemma2_chatml_template = gemma_chatml_template
gemma2_chatml_ollama = gemma_chatml_ollama + "PARAMETER num_ctx 4096\n"
gemma2_chatml_eos_token = gemma_chatml_eos_token
CHAT_TEMPLATES["gemma2_chatml"] = (gemma2_chatml_template, gemma2_chatml_eos_token, True, gemma2_chatml_ollama,)
DEFAULT_SYSTEM_MESSAGE["gemma2_chatml"] = None # No system message in Gemma 2
pass
# =========================================== Llama-3
# Weirdly \n\n is needed?
llama3_template = \
"{{ bos_token }}"\
"{% for message in messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ '<|start_header_id|>user<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }}"\
"{% else %}"\
"{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"\
"{% endif %}"
pass
# Ollama from https://www.ollama.com/library/llama3
llama3_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>"""
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
llama3_template_eos_token = "eos_token"
CHAT_TEMPLATES["llama-3"] = (llama3_template, llama3_template_eos_token, False, llama3_ollama,)
DEFAULT_SYSTEM_MESSAGE["llama-3"] = None # No system message in Llama-3
CHAT_TEMPLATES["llama3"] = (llama3_template, llama3_template_eos_token, False, llama3_ollama,)
DEFAULT_SYSTEM_MESSAGE["llama3"] = None # No system message in Llama-3
pass
# =========================================== Phi-3
# "{{ bos_token }}"\ # Phi-3.5 removes BOS?
phi3_template = \
"{% for message in messages %}"\
"{% if message['role'] == 'user' %}"\
"{{'<|user|>\n' + message['content'] + '<|end|>\n'}}"\
"{% elif message['role'] == 'assistant' %}"\
"{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}"\
"{% else %}"\
"{{'<|' + message['role'] + '|>\n' + message['content'] + '<|end|>\n'}}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '<|assistant|>\n' }}"\
"{% endif %}"
pass
# Ollama from https://www.ollama.com/library/phi3
phi3_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .System }}<|system|>
{{ .System }}<|end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>
"""
PARAMETER stop "<|end|>"
PARAMETER stop "<|user|>"
PARAMETER stop "<|assistant|>"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
phi3_template_eos_token = "<|end|>"
CHAT_TEMPLATES["phi-3"] = (phi3_template, phi3_template_eos_token, False, phi3_ollama,)
DEFAULT_SYSTEM_MESSAGE["phi-3"] = None # No system message in Phi-3
CHAT_TEMPLATES["phi-35"] = CHAT_TEMPLATES["phi-3"]
DEFAULT_SYSTEM_MESSAGE["phi-35"] = None # No system message in Phi-3.5
CHAT_TEMPLATES["phi-3.5"] = CHAT_TEMPLATES["phi-3"]
DEFAULT_SYSTEM_MESSAGE["phi-3.5"] = None # No system message in Phi-3.5
pass
# =========================================== Llama-3.1
"""
No trimming in Llama 3.1 Instruct!
Also an extra newline for Cutting Knowledge Date
See https://colab.research.google.com/drive/1Xpqq5xpIgO-B00MQ-UccYMwN2J8QFgBM?usp=sharing
Also should be
import datetime
tokenizer.apply_chat_template(
messages,
add_generation_prompt = True,
tokenize = False,
date_string = datetime.today().strftime("%d %B %Y")),
)
"""
llama31_template = \
"""{{- bos_token }}
{%- if custom_tools is defined %}
{%- set tools = custom_tools %}
{%- endif %}
{%- if not tools_in_user_message is defined %}
{%- set tools_in_user_message = true %}
{%- endif %}
{%- if not date_string is defined %}
{%- set date_string = "26 July 2024" %}
{%- endif %}
{%- if not tools is defined %}
{%- set tools = none %}
{%- endif %}
{#- This block extracts the system message, so we can slot it into the right place. #}
{%- if messages[0]['role'] == 'system' %}
{%- set system_message = messages[0]['content'] %}
{%- set messages = messages[1:] %}
{%- else %}
{%- set system_message = "{system_message}" %}
{%- endif %}
{#- System message + builtin tools #}
{{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
{%- if builtin_tools is defined or tools is not none %}
{{- "Environment: ipython\n" }}
{%- endif %}
{%- if builtin_tools is defined %}
{{- "Tools: " + builtin_tools | reject('equalto', 'code_interpreter') | join(", ") + "\n\n"}}
{%- endif %}
{{- "Cutting Knowledge Date: December 2023\n" }}
{{- "Today Date: " + date_string + "\n\n" }}
{%- if tools is not none and not tools_in_user_message %}
{{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
{{- "Do not use variables.\n\n" }}
{%- for t in tools %}
{{- t | tojson(indent=4) }}
{{- "\n\n" }}
{%- endfor %}
{%- endif %}
{{- system_message }}
{{- "<|eot_id|>" }}
{#- Custom tools are passed in a user message with some extra guidance #}
{%- if tools_in_user_message and not tools is none %}
{#- Extract the first user message so we can plug it in here #}
{%- if messages | length != 0 %}
{%- set first_user_message = messages[0]['content'] %}
{%- set messages = messages[1:] %}
{%- else %}
{{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
{%- endif %}
{{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
{{- "Given the following functions, please respond with a JSON for a function call " }}
{{- "with its proper arguments that best answers the given prompt.\n\n" }}
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
{{- "Do not use variables.\n\n" }}
{%- for t in tools %}
{{- t | tojson(indent=4) }}
{{- "\n\n" }}
{%- endfor %}
{{- first_user_message + "<|eot_id|>"}}
{%- endif %}
{%- for message in messages %}
{%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] + '<|eot_id|>' }}
{%- elif 'tool_calls' in message %}
{%- if not message.tool_calls|length == 1 %}
{{- raise_exception("This model only supports single tool-calls at once!") }}
{%- endif %}
{%- set tool_call = message.tool_calls[0].function %}
{%- if builtin_tools is defined and tool_call.name in builtin_tools %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
{{- "<|python_tag|>" + tool_call.name + ".call(" }}
{%- for arg_name, arg_val in tool_call.arguments | items %}
{{- arg_name + '="' + arg_val + '"' }}
{%- if not loop.last %}
{{- ", " }}
{%- endif %}
{%- endfor %}
{{- ")" }}
{%- else %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
{{- '{"name": "' + tool_call.name + '", ' }}
{{- '"parameters": ' }}
{{- tool_call.arguments | tojson }}
{{- "}" }}
{%- endif %}
{%- if builtin_tools is defined %}
{#- This means we're in ipython mode #}
{{- "<|eom_id|>" }}
{%- else %}
{{- "<|eot_id|>" }}
{%- endif %}
{%- elif message.role == "tool" or message.role == "ipython" %}
{{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
{%- if message.content is mapping or message.content is iterable %}
{{- message.content | tojson }}
{%- else %}
{{- message.content }}
{%- endif %}
{{- "<|eot_id|>" }}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
{%- endif %}
"""
pass
# Ollama from https://ollama.com/library/llama3.1 (needs updating!)
llama31_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{ if .Messages }}
{{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|>
{{- if .System }}
{{ .System }}
{{- end }}
{{- if .Tools }}
You are a helpful assistant with tool calling capabilities. When you receive a tool call response, use the output to format an answer to the original use question.
{{- end }}
{{- end }}<|eot_id|>
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 }}
{{- if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>
{{- if and $.Tools $last }}
Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt.
Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables.
{{ $.Tools }}
{{- end }}
{{ .Content }}<|eot_id|>{{ if $last }}<|start_header_id|>assistant<|end_header_id|>
{{ end }}
{{- else if eq .Role "assistant" }}<|start_header_id|>assistant<|end_header_id|>
{{- if .ToolCalls }}
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "parameters": {{ .Function.Arguments }}}{{ end }}
{{- else }}
{{ .Content }}{{ if not $last }}<|eot_id|>{{ end }}
{{- end }}
{{- else if eq .Role "tool" }}<|start_header_id|>ipython<|end_header_id|>
{{ .Content }}<|eot_id|>{{ if $last }}<|start_header_id|>assistant<|end_header_id|>
{{ end }}
{{- end }}
{{- end }}
{{- else }}
{{- if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ end }}{{ .Response }}{{ if .Response }}<|eot_id|>{{ end }}"""
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
PARAMETER stop "<|eom_id|>"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
llama31_template_eos_token = "eos_token"
CHAT_TEMPLATES["llama-3.1"] = (llama31_template, llama31_template_eos_token, False, llama31_ollama,)
DEFAULT_SYSTEM_MESSAGE["llama-3.1"] = "" # Llama3.1 default system message is empty + the dates
CHAT_TEMPLATES["llama-31"] = (llama31_template, llama31_template_eos_token, False, llama31_ollama,)
DEFAULT_SYSTEM_MESSAGE["llama-31"] = "" # Llama3.1 default system message is empty + the dates
pass
# =========================================== Qwen 2.5
qwen25_template = \
"""{%- if tools %}
{{- \'<|im_start|>system\\n\' }}
{%- if messages[0][\'role\'] == \'system\' %}
{{- messages[0][\'content\'] }}
{%- else %}
{{- \'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.\' }}
{%- endif %}
{{- "\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>" }}
{%- for tool in tools %}
{{- "\\n" }}
{{- tool | tojson }}
{%- endfor %}
{{- "\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\"name\\": <function-name>, \\"arguments\\": <args-json-object>}\\n</tool_call><|im_end|>\\n" }}\n{%- else %}
{%- if messages[0][\'role\'] == \'system\' %}
{{- \'<|im_start|>system\\n\' + messages[0][\'content\'] + \'<|im_end|>\\n\' }}
{%- else %}
{{- \'<|im_start|>system\\n{system_message}<|im_end|>\\n\' }}
{%- endif %}\n{%- endif %}\n{%- for message in messages %}
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
{{- \'<|im_start|>\' + message.role + \'\\n\' + message.content + \'<|im_end|>\' + \'\\n\' }}
{%- elif message.role == "assistant" %}
{{- \'<|im_start|>\' + message.role }}
{%- if message.content %}
{{- \'\\n\' + message.content }}
{%- endif %}
{%- for tool_call in message.tool_calls %}
{%- if tool_call.function is defined %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- \'\\n<tool_call>\\n{"name": "\' }}
{{- tool_call.name }}
{{- \'", "arguments": \' }}
{{- tool_call.arguments | tojson }}
{{- \'}\\n</tool_call>\' }}
{%- endfor %}
{{- \'<|im_end|>\\n\' }}
{%- elif message.role == "tool" %}
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %} {{- \'<|im_start|>user\' }}
{%- endif %}
{{- \'\\n<tool_response>\\n\' }}
{{- message.content }}
{{- \'\\n</tool_response>\' }}
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
{{- \'<|im_end|>\\n\' }}
{%- endif %}
{%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}
{{- \'<|im_start|>assistant\\n\' }}
{%- endif %}
"""
# Ollama from https://ollama.com/library/qwen2.5/blobs/eb4402837c78
qwen25_ollama = \
'''
FROM {__FILE_LOCATION__}
TEMPLATE """{{- if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{- if .System }}
{{ .System }}
{{- end }}
{{- if .Tools }}
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}
{{- end }}
</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{ else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}
{{- else }}
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}{{ .Response }}{{ if .Response }}<|im_end|>{{ end }}"""
PARAMETER stop "<|im_end|>"
PARAMETER stop "<|endoftext|>"
PARAMETER temperature 1.5
PARAMETER min_p 0.1
'''
qwen25_template_eos_token = "eos_token"
qwen25_default_system_message = "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."
CHAT_TEMPLATES["qwen-2.5"] = (qwen25_template, qwen25_template_eos_token, False, qwen25_ollama,)
DEFAULT_SYSTEM_MESSAGE["qwen-2.5"] = qwen25_default_system_message # No system message in Qwen 2.5
CHAT_TEMPLATES["qwen-25"] = (qwen25_template, qwen25_template_eos_token, False, qwen25_ollama,)
DEFAULT_SYSTEM_MESSAGE["qwen-25"] = qwen25_default_system_message # No system message in Qwen 2.5
CHAT_TEMPLATES["qwen25"] = (qwen25_template, qwen25_template_eos_token, False, qwen25_ollama,)
DEFAULT_SYSTEM_MESSAGE["qwen25"] = qwen25_default_system_message # No system message in Qwen 2.5
CHAT_TEMPLATES["qwen2.5"] = (qwen25_template, qwen25_template_eos_token, False, qwen25_ollama,)
DEFAULT_SYSTEM_MESSAGE["qwen2.5"] = qwen25_default_system_message # No system message in Qwen 2.5
pass
def _change_system_message(template: str, type_chat_template: str, system_message: str = None):
system_message_pattern = r"\{system_message\}"
# For predefined templates, check if default system message exists
default_system_message = DEFAULT_SYSTEM_MESSAGE.get(f"{type_chat_template}", None)
if default_system_message is None:
if system_message is not None:
logger.warning_once(
f"Unsloth: You tried to change the system message for {type_chat_template}, "
"but it doesn't have a default system message. "
"You need to manually add the system message in your data."
)
return template, system_message
pass
# For custom templates
if type_chat_template is None:
has_placeholder = re.search(system_message_pattern, template) is not None
if has_placeholder:
if system_message is None:
raise ValueError("Unsloth: You need to provide a system message for custom templates.")
new_template = re.sub(system_message_pattern, system_message, template)
return new_template, system_message
return template, system_message
pass
# For predefined templates with default system message
message_to_use = system_message if system_message is not None else default_system_message
new_template = re.sub(system_message_pattern, message_to_use, template)
return new_template, message_to_use
pass
def get_chat_template(
tokenizer,
chat_template = "chatml",
mapping = {"role" : "role", "content" : "content", "user" : "user", "assistant" : "assistant"},
map_eos_token = True,
system_message = None,
):
assert(type(map_eos_token) is bool)
old_tokenizer = tokenizer
IS_GEMMA = False
if tokenizer.__class__.__name__.startswith("Gemma"):
if chat_template == "chatml": chat_template = "gemma_chatml"
IS_GEMMA = True
pass
# We add a check for Llama-3
# if chat_template == "llama-3":
# tokenizer._using_llama3_template = True
# else:
# llama3_tokens = set(["<|end_header_id|>", "<|eot_id|>", "<|start_header_id|>"])
# check_llama3_tokens = llama3_tokens & set(str(x) for x in tokenizer.added_tokens_decoder.values())
# if len(check_llama3_tokens) == len(llama3_tokens):
# tokenizer._using_llama3_template = True
# pass
# pass
# We first check if the tokenizer is a fast one. If not, we cannot convert this!
is_fast_tokenizer = getattr(tokenizer, "is_fast", False)
old_padding_side = tokenizer.padding_side
same_padding_token = False
type_chat_template = None
if type(chat_template) in (list, tuple,):
# For changing system message later
# Since it's not supported yet, we will raise an error first!
type_chat_template = chat_template[0].lower()
chat_template, stop_word = chat_template
assert(type(chat_template) is str)
assert(type(stop_word) is str)
ollama_modelfile = None
elif type(chat_template) is str:
# For changing system message later
type_chat_template = chat_template.lower()
chat_template, stop_word, yes_map_eos_token, ollama_modelfile = CHAT_TEMPLATES[chat_template]
# Check mapping to eos_token
if not map_eos_token and yes_map_eos_token: map_eos_token = True
if not yes_map_eos_token and map_eos_token: map_eos_token = False
if type(stop_word) in (list, tuple,):
token_mapping, stop_word = stop_word
assert(type(token_mapping) is dict)
else:
token_mapping = None
assert(type(stop_word) is str)
# Check fast tokenizer
if not is_fast_tokenizer:
print(
"Unsloth: Not a fast tokenizer, so can't process it as of yet :(\n"\
"Please log a Github issue if you want this as a new feature!\n"\
"Your chat template will still work, but it won't add or edit tokens."
)
elif token_mapping is not None:
# token_mapping = {"<start_of_turn>" : "<|im_start|>", "<end_of_turn>" : "<|im_end|>"}
# For Gemma :)
string_vocab = tokenizer._tokenizer.to_str()
skipped = 0
for old_token, new_token in token_mapping.items():
old_count = string_vocab.count(f'"{old_token}"')
new_count = string_vocab.count(f'"{new_token}"')
if new_count != 0:
print(f"{new_token} is already a token. Skipping.")
skipped += 1
elif old_count == 0:
raise RuntimeError(f"{old_token} was not part of the tokenizer!")
else:
string_vocab = string_vocab.replace(f'"{old_token}"', f'"{new_token}"')
pass
pass
if map_eos_token and (not stop_word in token_mapping.values()):
# Do not map 107 = <|im_end|> and 1 = <|im_end|>. This will reduce the vocab size by 1
logger.warning_once(f"Unsloth: Will map {stop_word} to EOS = {tokenizer.eos_token}.")
string_vocab = string_vocab.replace(tokenizer.eos_token, stop_word)
pass
if skipped != len(token_mapping):
new_tokenizer = tokenizer._tokenizer.from_str(string_vocab)
# Careful on pad_token
old_pad_token = tokenizer.pad_token
if old_pad_token == tokenizer.eos_token:
old_pad_token = stop_word
same_padding_token = True
pass
if map_eos_token:
new_tokenizer = tokenizer.__class__(
tokenizer_object = new_tokenizer,
eos_token = stop_word,
pad_token = old_pad_token,
)
else:
new_tokenizer = tokenizer.__class__(
tokenizer_object = new_tokenizer,
pad_token = old_pad_token,
)
pass
# Must fix the sentence piece tokenizer since there's no tokenizer.model file!
tokenizer = fix_sentencepiece_tokenizer(tokenizer, new_tokenizer, token_mapping,)
else:
pass
elif map_eos_token and (stop_word != "eos_token"):
logger.warning_once(f"Unsloth: Will map {stop_word} to EOS = {tokenizer.eos_token}.")
# Replaces the old EOS token with a new one.
# Useful for ChatML <|im_end|> for example.
# Usually we train 2 more tokens <|im_start|> and <|im_end|>
# But training the lm_head and embeddings are slow!
# This is a HACK!
# Idea from https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
old_bos_token = getattr(tokenizer, "bos_token", None)
old_eos_token = getattr(tokenizer, "eos_token", None)
old_pad_token = getattr(tokenizer, "pad_token", None)
old_unk_token = getattr(tokenizer, "unk_token", None)
string_vocab = tokenizer._tokenizer.to_str()
# First check if new stop_word is in the tokenizer
if stop_word in string_vocab:
# We shall swap them around
temporary_stop_token = "<|:__TEMP//STOP//TOKEN__:|>"
string_vocab = string_vocab.replace(old_eos_token, temporary_stop_token)
string_vocab = string_vocab.replace(stop_word, old_eos_token)
string_vocab = string_vocab.replace(temporary_stop_token, stop_word)
else:
string_vocab = string_vocab.replace(old_eos_token, stop_word)
pass
new_tokenizer = tokenizer._tokenizer.from_str(string_vocab)
# Careful on pad_token
if old_pad_token == old_eos_token:
old_pad_token = stop_word
same_padding_token = True
pass
new_tokenizer = tokenizer.__class__(
tokenizer_object = new_tokenizer,
bos_token = old_bos_token,
eos_token = stop_word,
unk_token = old_unk_token,
pad_token = old_pad_token,
)
# Must fix the sentence piece tokenizer since there's no tokenizer.model file!
token_mapping = { old_eos_token : stop_word, }
tokenizer = fix_sentencepiece_tokenizer(tokenizer, new_tokenizer, token_mapping,)
pass
else:
raise TypeError(
f"Unsloth: `chat_template` must be a tuple of (your_template, eos_token,) or one of\n"\
f"{CHAT_TEMPLATES.keys()}"
)
pass
# Careful on Gemma
# bos_token is a must or else losses become too high
if IS_GEMMA and not chat_template.startswith(("{{ bos_token }}", "{{- bos_token }}")):
chat_template = "{{ bos_token }}" + chat_template
pass
# For ShareGPT role -> from and content -> value
new_chat_template = chat_template\
.replace("'role'", "'" + mapping["role"] + "'")\
.replace("'content'", "'" + mapping["content"] + "'")\
.replace("'user'", "'" + mapping["user"] + "'")\
.replace("'assistant'", "'" + mapping["assistant"] + "'")
_, tokenizer = patch_tokenizer(model = None, tokenizer = tokenizer)
tokenizer.padding_side = old_padding_side
# If not normal HF, we add a check to make old templates work
if mapping != {"role" : "role", "content" : "content", "user" : "user", "assistant" : "assistant"}:
chat_template = \
"{% if 'role' in messages[0] %}" + \
chat_template + \
"{% else %}" + \
new_chat_template + \
"{% endif %}"
else:
chat_template = new_chat_template
pass
chat_template, system_message = _change_system_message(chat_template, type_chat_template, system_message)
tokenizer.chat_template = chat_template
# Also fix up other tokens
old_pad_token = getattr(old_tokenizer, "pad_token", None)
old_bos_token = getattr(old_tokenizer, "bos_token", None)
old_unk_token = getattr(old_tokenizer, "unk_token", None)
new_pad_token = getattr(tokenizer, "pad_token", None)
new_bos_token = getattr(tokenizer, "bos_token", None)
new_unk_token = getattr(tokenizer, "unk_token", None)
if old_bos_token != new_bos_token: tokenizer.bos_token = old_bos_token
if old_unk_token != new_unk_token: tokenizer.unk_token = old_unk_token
if not same_padding_token:
if old_pad_token != new_pad_token: tokenizer.pad_token = old_pad_token
pass
# stopping_criteria = create_stopping_criteria(tokenizer, stop_word)
# Patch saving functions
tokenizer = patch_saving_functions(tokenizer)
# Add Ollama
tokenizer._ollama_modelfile = ollama_modelfile
tokenizer._system_message = system_message
return tokenizer#, stopping_criteria
pass
def remove_special_tokens(tokenizer, prompt):
# Removes double BOS token
if prompt.startswith(tokenizer.bos_token):
prompt = prompt[len(tokenizer.bos_token):]
pass
return prompt
pass
def _parse_combined_prompt(combined_prompt, dataset):
# Find {...}
possible_columns = re.findall(r"\{(.+?)\}", combined_prompt)
dataset_columns = set(dataset.column_names)
for column in possible_columns:
if column not in dataset_columns:
raise KeyError(
f"Unsloth: Your prompt includes '{column}' but this does not exist in the dataset. "\
f"Only allowed columns are {list(dataset_columns)}"
)
pass
pass
# Find [[...]]
optional_prompts = list(re.finditer(r"\[\[.+?\]\]", combined_prompt, flags = re.DOTALL | re.MULTILINE))
optional_prompts = [(x.span(), x.group(0)) for x in optional_prompts]
final_optional_prompts = []
if len(optional_prompts) != 0:
# Add left
left = optional_prompts[0]
l = left[0][0]
if l != 0: final_optional_prompts.append(combined_prompt[:l])
# Add in between
for left, right in zip(optional_prompts[:-1], optional_prompts[1:]):
l, r = left[0][-1], right[0][0]
final_optional_prompts.append(left)
if l != r: final_optional_prompts.append(combined_prompt[l : r])
pass
final_optional_prompts.append(optional_prompts[-1])
# Add right
right = optional_prompts[-1]
r = right[0][1]
if r != len(combined_prompt): final_optional_prompts.append(combined_prompt[r:])
else:
# Just add in the entire string
final_optional_prompts.append(combined_prompt)
pass
check_combined = "".join(x if type(x) is str else x[1] for x in final_optional_prompts)
assert(combined_prompt == check_combined)
return possible_columns, final_optional_prompts
pass
def _create_formatter(possible_columns, final_optional_prompts, user_column_name):
# Start final prompt!
function = ["def __combined_prompt_processor__(examples):"]
columns = list(set(possible_columns))
for column in columns:
function.append(f"{' '*4}{column}__ = examples['{column}']")
function.append(f"{' '*4}texts = []")
function.append(f"{' '*4}for ({', '.join(columns)}) in zip({', '.join(f'{x}__' for x in columns)}):")
# Add optional tags as well!
final_prompt = ""
formatter = []
for j, optional_prompt in enumerate(final_optional_prompts):
if type(optional_prompt) is str:
columns = re.findall(r"\{(.+?)\}", optional_prompt)
formatter += columns
# Must escape \n \r
final_prompt += optional_prompt.encode("unicode-escape").decode("utf-8").replace("'", "\\'").replace('"', '\\"')
else:
where, prompt = optional_prompt
# Strip [[...]]
# Must escape \n \r
prompt = prompt[2:-2].encode("unicode-escape").decode("utf-8").replace("'", "\\'").replace('"', '\\"')
columns = re.findall(r"\{(.+?)\}", prompt)
x = f"__optional_{j}__"
prompt = f"{' '*8}{x} = '{prompt}'.format({', '.join(f'{x} = {x}' for x in columns)}) if {columns[0]} else ''"
function.append(prompt)
formatter.append(x)
final_prompt += "{" + x + "}"
pass
pass
function.insert(1, f"{' '*4}__combined_prompt__ = '{final_prompt}'")
function.append(f"{' '*8}texts.append("\
f"__combined_prompt__.format({', '.join(f'{x} = {x}' for x in formatter)}))")
function.append(f"{' '*4}return " + "{ " + f"'{user_column_name}' : texts" + " }")
return "\n".join(function)
pass
def to_sharegpt(
dataset,
merged_prompt = "",
merged_column_name = "instruction",
output_column_name = "output",
remove_unused_columns = True,
conversation_extension = 1,
random_state = 3407,
):
"""
Converts a dataset to ShareGPT style.
ShareGPT requires only 1 input and 1 output field.
This means one has to merge multiple columns into 1 for 1 input field.
Use `conversation_extension` to increase the length of each conversation by randomnly
selecting a few and packing them into 1.
merged_prompt = "", Prompt to merge columns into 1 input
merged_column_name = "instruction", Final column name for the input field
output_column_name = "output", Final column name for the output field
remove_unused_columns = True,
conversation_extension = 1, Automatically combines `conversation_extension` convos into 1
random_state = 3407,
"""
if "conversations" in dataset.column_names:
convo = dataset[0]["conversations"]
if type(convo) is list:
raise TypeError("Unsloth: Your dataset is probably already in ShareGPT format!")
pass
pass
possible_columns, final_optional_prompts = _parse_combined_prompt(merged_prompt, dataset)
function = _create_formatter(possible_columns, final_optional_prompts, merged_column_name)
exec(function, globals())
dataset = dataset.map(__combined_prompt_processor__, batched = True, desc = "Merging columns")
def __convert_to_sharegpt__(examples):
users = examples[merged_column_name]
assistants = examples[output_column_name]
texts = [
[
{"from" : "human", "value" : str(user) },
{"from" : "gpt", "value" : str(assistant)},
] \
for user, assistant in zip(users, assistants)
]
return { "conversations" : texts, }
pass
dataset = dataset.map(
__convert_to_sharegpt__,
batched = True,
desc = "Converting to ShareGPT",
# Remove unused columns!
remove_columns = dataset.column_names if remove_unused_columns else None,
)
# Randomnly concat conversations to create a long stream!
from datasets import concatenate_datasets
n_extensions = max(conversation_extension-1, 0)
if n_extensions == 0: return dataset
dataset = dataset.rename_columns({"conversations" : "conversations0"})
all_shuffled = [dataset]
for j in range(1, n_extensions+1):
shuffled = dataset.shuffle(seed = random_state+j).rename_columns({"conversations0" : f"conversations{j}"})
all_shuffled.append(shuffled)
pass
dataset = concatenate_datasets(all_shuffled, axis = 1)
# Combine them into 1
function = "def __combine_conversations__(examples):\n"
n_extensions += 1
for j in range(n_extensions):
function += f"{' '*4}conversations{j}__ = examples['conversations{j}']\n"
function += f"{' '*4}convos = []\n"
function += f"{' '*4}for ({', '.join(f'conversations{j}' for j in range(n_extensions))}) "\
f"in zip({', '.join(f'conversations{j}__' for j in range(n_extensions))}):\n"
function += f"{' '*8}convos.append("\
f"{'+'.join(f'conversations{j}' for j in range(n_extensions))})\n"
function += f"{' '*4}return " + "{ " + "'conversations' : convos" + " }"
# Map function
exec(function, globals())
dataset = dataset.map(
__combine_conversations__,
batched = True,
desc = "Extending conversations",
# Remove unused columns!
remove_columns = dataset.column_names if remove_unused_columns else None,
)
return dataset
pass
def standardize_sharegpt(
dataset,
aliases_for_system = ["system",],
aliases_for_user = ["user", "human", "input",],
aliases_for_assistant = ["gpt", "assistant", "output",],
):
"""
Standardizes ShareGPT and other formats to user/assistant Hugging Face format.
Get aliases for the system, user and assistant roles.
These shall map to "system", "user" and "assistant" respectively.
aliases_for_system = ["system",],
aliases_for_user = ["user", "human", "input",],
aliases_for_assistant = ["gpt", "assistant", "output",],
"""
import collections
import itertools
convos = dataset[:10]["conversations"]
uniques = collections.defaultdict(list)
for convo in convos:
for message in convo:
for key, value in message.items():
uniques[key].append(value)
pass
# Must be only 2 entries
assert(len(uniques.keys()) == 2)
keys = list(uniques.keys())
length_first = len(set(uniques[keys[0]]))
length_second = len(set(uniques[keys[1]]))
if length_first < length_second:
# Role is assigned to the first element
role_key = keys[0]
content_key = keys[1]
else:
role_key = keys[1]
content_key = keys[0]
pass
# Check roles are in aliases
all_aliases = set(aliases_for_system + aliases_for_user + aliases_for_assistant)
roles = set(uniques[role_key])
leftover_aliases = (all_aliases | roles) - all_aliases
if len(leftover_aliases) != 0:
raise TypeError(
f"Unsloth: {list(leftover_aliases)} are not in aliases. Please update aliases."
)
pass
# Mapping for aliases
aliases_mapping = {}
for x in aliases_for_system: aliases_mapping[x] = "system"
for x in aliases_for_user: aliases_mapping[x] = "user"
for x in aliases_for_assistant: aliases_mapping[x] = "assistant"
def _standardize_dataset(examples):
convos = examples["conversations"]
all_convos = []
for convo in convos:
new_convo = [
{ "role" : aliases_mapping[message[role_key]], "content" : message[content_key], }
for message in convo
]
all_convos.append(new_convo)
pass
return { "conversations" : all_convos, }
pass
return dataset.map(_standardize_dataset, batched = True, desc = "Standardizing format")
pass
def get_ollama_eos_tokens(tokenizer, extra_eos_tokens = []):
added_tokens_decoder = tokenizer.added_tokens_decoder.values()
added_tokens_decoder = [str(x) for x in added_tokens_decoder]
# Remove added_tokens_decoder duplicates
added_tokens_decoder = list(set(added_tokens_decoder) - set(extra_eos_tokens))
# Remove BOS
if getattr(tokenizer, "bos_token", None) is not None:
added_tokens_decoder = [x for x in added_tokens_decoder if x != tokenizer.bos_token]
pass
repeatted_tokens = []
# Join all vocab
joined_text = "\x01\x00".join(added_tokens_decoder)
for token in added_tokens_decoder:
n = len(token)
repeatted_counts = joined_text.count(token[:n//2])
# Try finding longer than 1/2 of the token in the rest
# For eg <|reserved_special_token_0|>, <|reserved_special_token_1|>
if repeatted_counts > 2:
for j in range(n//2+1, n):
if joined_text.count(token[:j]) < repeatted_counts:
j -= 1
# Remove repeatted tokens to reduce search space
joined_text = joined_text.replace(token[:j], "")
repeatted_tokens.append(token[:j])
break
pass
pass
pass
# Remove duplicates
splitted = joined_text.split("\x01\x00")
final_eos_tokens = []
for old, new in zip(added_tokens_decoder, splitted):
if old == new: final_eos_tokens.append(old)
pass
final_eos_tokens += extra_eos_tokens
final_eos_tokens += repeatted_tokens
# Remove new lines, spaces and HTML tags
filtered_eos_tokens = []
for token in final_eos_tokens:
if token.count("\n") == len(token): continue
elif token.count("▁") == len(token): continue
elif token.startswith("<") and len(token) <= 2: continue
elif token.startswith("</") and len(token) == 3: continue
filtered_eos_tokens.append(token)
pass
return filtered_eos_tokens
pass
def construct_chat_template( \
tokenizer = None,
chat_template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{SYSTEM}<|eot_id|><|start_header_id|>user<|end_header_id|>
{INPUT}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{OUTPUT}<|eot_id|><|start_header_id|>user<|end_header_id|>
{INPUT}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{OUTPUT}<|eot_id|>""",
default_system_message = \
"Below are some instructions that describe some tasks. Write responses that appropriately complete each request.",
extra_eos_tokens = None,
):
"""
Creates a Ollama modelfile and a HF Jinja template from a custom
template. You must provide 2x examples of an input & output.
There is an optional system message as well.
You must use {INPUT}, {OUTPUT} twice, and {SYSTEM} is optional.
"""
# Strip only the left
chat_template = chat_template.lstrip()
assert(tokenizer is not None)
if extra_eos_tokens is None: extra_eos_tokens = []
elif type(extra_eos_tokens) is str: extra_eos_tokens = [extra_eos_tokens,]
vocab = tokenizer.get_vocab()
for extra_eos in extra_eos_tokens:
assert(type(extra_eos) is str)
if extra_eos not in vocab:
raise ValueError(f"Unsloth: `{extra_eos}` is not a singular token in the tokenizer.")
pass
pass
error_msg = \
"Unsloth: Your prompt template must have 2 examples showing the user input {INPUT} "\
"and the assistant output {OUTPUT}\n\n"\
"For example what is not allowed is just:\n"\
"### Input:\\n{INPUT}\\n\\n### Response:\\n{OUTPUT}\\n\n\n"\
"What is required is 2x of this:\n"\
"### Input:\\n{INPUT}\\n\\n### Response:\\n{OUTPUT}\\n"\
"### Input:\\n{INPUT}\\n\\n### Response:\\n{OUTPUT}\\n"
# Check for EOS after {OUTPUT}
if tokenizer.eos_token is not None:
extra_eos_tokens.insert(0, tokenizer.eos_token)
if len(extra_eos_tokens) == 0:
raise RuntimeError(
"Unsloth: Your tokenizer does not have an EOS token? Please provide one via extra_eos_tokens!"
)
pass
# Check tokenizer types
tokenizer_name = tokenizer.name_or_path.lower()
if tokenizer_name.startswith(("unsloth/llama-3-8b-instruct", "unsloth/llama-3-70b-instruct")):
# Add <|eot_id|>
extra_eos_tokens.append("<|eot_id|>")
elif ("<|eot_id|>" in extra_eos_tokens or "<|eot_id|>" in chat_template) and \
tokenizer_name.startswith(("unsloth/llama-3-8b", "unsloth/llama-3-70b")):
# Warn
logger.warning(
"Unsloth: Base llama-3 models did not train <|eot_id|>.\n"\
"Please use the instruct version or use <|end_of_text|>"
)
pass
extra_eos_tokens = list(set(extra_eos_tokens))
count_eos = 0
for eos in extra_eos_tokens:
count_eos += len(re.findall(r"{OUTPUT}" + re.escape(eos), chat_template))
pass
# This forces you to provide 2 input and outputs
final_combined_check = False
try:
# O(N^2) search finding 2 repeatted pieces of text
j = len(chat_template)-1
at_least_one = False
while j > 0:
found = chat_template.rfind(chat_template[j:], 0, j)
if found == -1: break
j -= 1
at_least_one = True
pass
if j > 0: j += 1
else: raise RuntimeError(error_msg)
if not at_least_one: raise RuntimeError(error_msg)
# Must be equivalent to left
final_combined_check = True
# Repeatted text
instruction_response = chat_template[j:]
if instruction_response.count("{INPUT}") != 1 or instruction_response.count("{OUTPUT}") != 1:
raise RuntimeError(error_msg)
pass
# 1st System, Instruction, Output pair
left = chat_template[:j]
# 2nd Instruction, Output pair
right = chat_template[j:]
final_combined_check = left if final_combined_check else chat_template
# Isolate input
extra_eos_tokens_regex = "|".join(f"(?:{re.escape(x)})" for x in extra_eos_tokens)
if len(extra_eos_tokens_regex) != 0:
find_end = f"(?:{extra_eos_tokens_regex})?"
else:
find_end = ""
find_end = r"\{INPUT\}[\s\n]{0,}" + find_end
input_end = list(re.finditer(find_end, right))
assert(len(input_end) == 1)
input_end = input_end[0]
input_end = input_end.span(0)[1]
input_part = right[:input_end]
# Isolate output
output_part = right[input_end:]
# Isolate system
where_system = left.find(input_part)
system_part = left[:where_system if where_system != -1 else len(left)]
# Check if the user provided a correct prompt
combined = system_part + input_part + output_part
if combined != final_combined_check:
combined_changed = combined .replace('\n', '\\n')
left_changed = final_combined_check.replace('\n', '\\n')
raise RuntimeError(
"Unsloth: The prompt template you provided isn't correct. You gave:\n"\
f"{combined_changed}\n\n"\
"But we require the following:\n"\
f"{left_changed}"
)
pass
except:
ending = chat_template[chat_template.find("{OUTPUT}") + len("{OUTPUT}"):]
ending = re.escape(ending)
find_text = "{INPUT}" + ending + "(.+?{OUTPUT}" + ending + ")"
response_part = re.findall(find_text, chat_template, flags = re.DOTALL | re.MULTILINE)
response_part = response_part[0]
for j in range(1, len(response_part)):
try_find = re.escape(response_part[:j])
try: found = next(re.finditer("(" + try_find + ").+?\{INPUT\}", chat_template, flags = re.DOTALL | re.MULTILINE))
except: break
pass
separator = found.group(1)
response_start = chat_template.find(response_part)
start_instruction = chat_template[:response_start].rfind(separator)
if start_instruction == -1: start_instruction = 0
instruction_part = chat_template[start_instruction:response_start]
combined = instruction_part + response_part
where = chat_template.find(combined)
system_part = chat_template[:where]
system_part, input_part, output_part = system_part, instruction_part, response_part
pass
if count_eos == 0:
logger.warning("Unsloth: We automatically added an EOS token to stop endless generations.")
eos = extra_eos_tokens[0]
output_part = output_part + eos
pass
# Ollama modelfile parts
# Check bos_token is in system prompt
ollama_system = system_part
has_bos_token = False
always_bos_token = False
if tokenizer("A").input_ids[0] == getattr(tokenizer, "bos_token_id", None):
always_bos_token = True
if ollama_system.startswith(tokenizer.bos_token):
has_bos_token = True
ollama_system = ollama_system[len(tokenizer.bos_token):]
pass
pass
# Check system
if "{SYSTEM}" in ollama_system:
system_modelfile = "{{ if .System }}" + ollama_system.replace("{SYSTEM}", "{{ .System }}") + "{{ end }}"
else:
system_modelfile = ollama_system
pass
input_modelfile = "{{ if .Prompt }}" + input_part .replace("{INPUT}", "{{ .Prompt }}") + "{{ end }}"
output_modelfile = output_part.replace("{OUTPUT}", "{{ .Response }}")
# Ollama EOS
ollama_eos = get_ollama_eos_tokens(tokenizer, extra_eos_tokens)
ollama_eos = '\n'.join(f'PARAMETER stop "{eos}"' for eos in ollama_eos)
# Add temperature and min_p to counteract gibberish
ollama_eos += "\nPARAMETER temperature 1.5\nPARAMETER min_p 0.1"
# Ollama modelfile
part = '"""'
modelfile = 'FROM {__FILE_LOCATION__}\n\n'\
'TEMPLATE ' + part + system_modelfile + input_modelfile + output_modelfile + \
part + '\n\n' + ollama_eos
# HF Jinja Chat template
def process(part, which, content = "message['content']"):
if part.endswith(which):
part = "'" + part[:part.find(which)] + f"' + {content}"
elif part.startswith(which):
part = f"{content} + '" + part[part.find(which):] + "'"
else:
part = "'" + part.replace(which, f"' + {content} + '") + "'"
if part.startswith("'' + "): part = part[5:]
return part
pass
input_jinja = process(input_part, "{INPUT}")
output_jinja = process(output_part, "{OUTPUT}")
pass
jinja_template = \
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ " + input_jinja + " }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ " + output_jinja + " }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"\
"{% if add_generation_prompt %}"\
"{{ '" + output_part[:output_part.find("{OUTPUT}")] + "' }}"\
"{% endif %}"
pass
# Now add system prompt to jinja
if len(system_part) != 0:
partial_system = process(system_part, "{SYSTEM}", "messages[0]['content']")
partial_system = partial_system.replace("{SYSTEM}", "")
if "{SYSTEM}" in partial_system:
if default_system_message is None:
raise RuntimeError("Unsloth: Please specify a default system message!")
pass
# Separate the BOS
if has_bos_token:
partial_system = partial_system.replace(tokenizer.bos_token, "", 1)
system_part = system_part .replace(tokenizer.bos_token, "", 1)
pass
partial_system = \
"{% if messages[0]['role'] == 'system' %}"\
"{{ " + partial_system + " }}"\
"{% set loop_messages = messages[1:] %}"
if default_system_message is not None:
full_system = system_part.replace("{SYSTEM}", default_system_message)
if "{SYSTEM}" in system_part:
modelfile += '\nSYSTEM "' + default_system_message + '"'
pass
partial_system += "{% else %}"\
"{{ '" + full_system + "' }}"\
"{% set loop_messages = messages %}"\
"{% endif %}"
else:
partial_system += "{% endif %}"
pass
jinja_template = partial_system + jinja_template
if has_bos_token:
jinja_template = "{{ bos_token }}" + jinja_template
pass
# Fix missing loop_messages
if "{% set loop_messages = messages %}" not in jinja_template:
jinja_template = jinja_template.replace(
"{% for message in loop_messages %}",
"{% for message in messages %}",
1, # Only replace the first one
)
pass
# Check if system part is the same!
jinja_template = re.sub(
r"\{\% if messages\[0\]\['role'\] \=\= 'system' \%\}\{\{ '(.+?)' \}\}"\
r"\{\% set loop\_messages \= messages\[1\:\] \%\}"\
r"\{\% else \%\}\{\{ '\1' \}\}\{\% set loop\_messages \= messages \%\}\{\% endif \%\}"\
r"\{\% for message in loop\_messages \%\}",
r"{{ '\1' }}{% for message in messages %}",
jinja_template, flags = re.MULTILINE | re.DOTALL,
)
# Check jinja tempate for bos
if always_bos_token:
if not jinja_template.startswith(("{{ bos_token }}", "{{- bos_token }}")):
jinja_template = "{{ bos_token }}" + jinja_template
pass
# Get instruction and output parts for train_on_inputs = False
input_part = input_part [:input_part .find("{INPUT}")]
output_part = output_part[:output_part.find("{OUTPUT}")]
return modelfile, jinja_template, input_part, output_part
pass
def test_construct_chat_template():
token = "hf_"
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", token = token)
chat_template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{SYSTEM}<|eot_id|><|start_header_id|>user<|end_header_id|>
{INPUT}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{OUTPUT}<|eot_id|><|start_header_id|>user<|end_header_id|>
{INPUT}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{OUTPUT}<|eot_id|>"""
default_system_message = \
"Below are some instructions that describe some tasks. Write responses that appropriately complete each request."
extra_eos_tokens = None
modelfile, jinja_template, _, _ = construct_chat_template(
tokenizer = tokenizer,
chat_template = chat_template,
extra_eos_tokens = extra_eos_tokens,
)
messages = [
{"role": "system", "content": "You are an assistant"},
{"role": "user", "content": "What is 2+2?"},
{"role": "assistant", "content": "It's 4."},
{"role": "user", "content": "Ok!"},
{"role": "assistant", "content": "Anything else?"},
{"role": "user", "content": "What's 2x2?"},
]
correct_output = tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
tokenizer.chat_template = jinja_template
new_output = tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
assert(correct_output == new_output)
pass
pass
def apply_chat_template( \
dataset,
tokenizer = None,
chat_template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{SYSTEM}<|eot_id|><|start_header_id|>user<|end_header_id|>
{INPUT}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{OUTPUT}<|eot_id|><|start_header_id|>user<|end_header_id|>
{INPUT}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{OUTPUT}<|eot_id|>""",
default_system_message = \
"Below are some instructions that describe some tasks. Write responses that appropriately complete each request.",
extra_eos_tokens = None,
):
"""
Creates a Ollama modelfile and a HF Jinja template from a custom
template. You must provide 2x examples of an input & output.
There is an optional system message as well.
You must use {INPUT}, {OUTPUT} twice, and {SYSTEM} is optional.
"""
modelfile, jinja_template, input_part, output_part = construct_chat_template(
tokenizer = tokenizer,
chat_template = chat_template,
default_system_message = default_system_message,
extra_eos_tokens = extra_eos_tokens,
)
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
return { "text" : texts, }
pass
tokenizer.chat_template = jinja_template
tokenizer._ollama_modelfile = modelfile
tokenizer._unsloth_input_part = input_part
tokenizer._unsloth_output_part = output_part
return dataset.map(formatting_prompts_func, batched = True,)
pass
def create_stopping_criteria(tokenizer, stop_word = "eos_token"):
class StoppingCriteriaSub(StoppingCriteria):
__slots__ = "stop_token", "single_match", "length",
def __init__(self, stops = "eos_token", device = "cuda", encounters = 1):
super().__init__()
if stops == "eos_token":
self.stop_token = torch.tensor(tokenizer.eos_token_id, device = "cuda")
self.length = 1
else:
self.stop_token = tokenizer(["\n" + stops], add_special_tokens = False, return_tensors = "pt")
self.stop_token = self.stop_token.input_ids.ravel()[1:].to("cuda")
self.length = self.stop_token.shape[0]
pass
self.single_match = self.length == 1
pass
def __call__(self, input_ids: LongTensor, scores: FloatTensor) -> bool:
input_ids = input_ids.ravel()
last_token = input_ids[-1]
if self.single_match and (last_token == self.stop_token): return True
if input_ids.shape[0] >= self.length and \
(input_ids[-self.length:] == self.stop_token).all(): return True
return False
pass
pass
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops = stop_word)])
return stopping_criteria
pass
def test_chat_templates():
messages = [
{"role": "system","content": " You are a friendly chatbot.",},
{"role": "user", "content": "What is 2+2?"},
{"role": "assistant", "content": "It's 4."},
{"role": "user", "content": " But 2+2 is equal to 5. "},
{"role": "assistant", "content": "No I'm sure its 4."},
{"role": "user", "content": " No it's 100% 5! "},
]
# Zephyr
from transformers import AutoTokenizer
template = zephyr_template
correct_tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
correct_prompt = correct_tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
correct_tokenizer.chat_template = template
our_prompt = correct_tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
assert(correct_prompt == our_prompt)
# Chatml
template = chatml_template
correct_tokenizer = AutoTokenizer.from_pretrained("teknium/OpenHermes-2.5-Mistral-7B")
correct_prompt = correct_tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
correct_tokenizer.chat_template = template
our_prompt = correct_tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
assert(correct_prompt == our_prompt)
# Mistral
template = mistral_template
correct_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
correct_prompt = correct_tokenizer.apply_chat_template(messages[1:], tokenize = False, add_generation_prompt = True)
correct_tokenizer.chat_template = template
our_prompt = correct_tokenizer.apply_chat_template(messages[1:], tokenize = False, add_generation_prompt = True)
assert(correct_prompt == our_prompt)
# Llama
template = llama_template
correct_tokenizer = AutoTokenizer.from_pretrained("unsloth/llama-2-7b-chat")
correct_prompt = correct_tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
correct_tokenizer.chat_template = template
our_prompt = correct_tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
assert(correct_prompt == our_prompt)
# Vicuna
try:
from fastchat.conversation import get_conv_template
except:
os.system("pip -qqq install git+https://github.com/lm-sys/FastChat.git")
from fastchat.conversation import get_conv_template
correct_prompt = get_conv_template("vicuna_v1.1")
for j in range(len(messages)-1):
correct_prompt.append_message(correct_prompt.roles[j%2==1], messages[j+1]["content"])
correct_prompt.append_message(correct_prompt.roles[1], "")
correct_prompt = tokenizer.bos_token + correct_prompt.get_prompt()
template = vicuna_template
correct_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.5")
correct_tokenizer.chat_template = template
our_prompt = correct_tokenizer.apply_chat_template(messages[1:], tokenize = False, add_generation_prompt = True)
assert(correct_prompt == our_prompt)
try:
from fastchat.conversation import get_conv_template
except:
os.system("pip -qqq install git+https://github.com/lm-sys/FastChat.git")
from fastchat.conversation import get_conv_template
correct_prompt = get_conv_template("zero_shot")
for j in range(len(messages)-1):
correct_prompt.append_message(correct_prompt.roles[j%2==1], messages[j+1]["content"])
correct_prompt.append_message(correct_prompt.roles[1], "")
correct_prompt = tokenizer.bos_token + correct_prompt.get_prompt()
template = vicuna_old_template
correct_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.5")
correct_tokenizer.chat_template = template
our_prompt = correct_tokenizer.apply_chat_template(messages[1:], tokenize = False, add_generation_prompt = True)
# We add </s> ourselves
assert(correct_prompt == our_prompt.replace("</s>", ""))
# Gemma
correct_tokenizer = AutoTokenizer.from_pretrained("unsloth/gemma-7b-it")
correct_prompt = correct_tokenizer.apply_chat_template(messages[1:], tokenize = False, add_generation_prompt = True)
correct_tokenizer.chat_template = gemma_template
our_prompt = correct_tokenizer.apply_chat_template(messages[1:], tokenize = False, add_generation_prompt = True)
assert(our_prompt == correct_prompt)
# Llama-3
template = llama3_template
correct_tokenizer = AutoTokenizer.from_pretrained("unsloth/llama-3-8b-Instruct")
correct_prompt = correct_tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
correct_tokenizer.chat_template = template
our_prompt = correct_tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
assert(correct_prompt == our_prompt)
# Phi-3
template = phi3_template
correct_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
correct_prompt = correct_tokenizer.apply_chat_template(messages[1:], tokenize = False, add_generation_prompt = True)
correct_tokenizer.chat_template = template
our_prompt = correct_tokenizer.apply_chat_template(messages[1:], tokenize = False, add_generation_prompt = True)
assert(correct_prompt == our_prompt)
pass
def test_hf_gguf_equivalence(tokenizer, gguf_model = "./model-unsloth.F16.gguf"):
"""
Carefully checks the output of GGUF's tokenization and HF.
Can catch all tokenization bugs.
"""
import subprocess
import re
messages = [
{"role": "user", "content": "What is 2+2?"},
{"role": "assistant", "content": "It's 4."},
{"role": "user", "content": " But 2+2 is equal to 5. "},
{"role": "assistant", "content": "No I'm sure its 4."},
{"role": "user", "content": " No it's 100% 5! "},
]
prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}""".format(
"Describe the city given eloquently.", # instruction
"The lost city of Atlantis.", # input
"", # output - leave this blank for generation!
)
prompts = [ prompt, ]
if tokenizer.chat_template is not None:
prompt = tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
prompt = prompt.replace("'", "") # Subprocess does not like ''
prompt = remove_special_tokens(tokenizer, prompt)
prompts.append(prompt)
pass
for prompt in prompts:
command = f"./llama.cpp/llama-cli -m {gguf_model} -n 0 --temp 0.0 --verbose-prompt "\
f"--check-tensors -p '{prompt}'"
datas = []
with subprocess.Popen(command, shell = True, stdout = subprocess.PIPE, stderr = subprocess.STDOUT, bufsize = 1) as sp:
for line in sp.stdout:
datas.append(line.decode("utf-8", errors = "replace"))
pass
gguf_tokens = "".join(datas)
# Now extract GGUF tokenization attempt
gguf_tokenized = re.findall("([\d]{1,}) \-\> \'([^\']{1,})\'", gguf_tokens, flags = re.MULTILINE)
gguf_tokenized = [(int(x[0]), x[1],) for x in gguf_tokenized]
input_ids = tokenizer(prompt).input_ids
tokens = tokenizer.batch_decode(input_ids)
hf_tokenized = list(zip(input_ids, tokens))
# Compare to Huggingface
for j, (hf_token, gguf_token) in enumerate(zip(hf_tokenized, gguf_tokenized)):
if (hf_token[0] != gguf_token[0]):
print("Failed GGUF != HF at", j)
print("HF =", hf_token)
print("GGUF =", gguf_token)
print(hf_tokenized)
print()
print(gguf_tokenized)
print()
raise RuntimeError("Failed comparing GGUF to HF.")
pass
pass
return True
pass