File size: 20,858 Bytes
c4bfc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .llama import *
import os
from ._utils import __version__
from .llama import (
    LlamaRotaryEmbedding,
    LlamaLinearScalingRotaryEmbedding,
)
from .mistral import *

try:
    from transformers.models.granite.modeling_granite import (
        GraniteAttention,
        GraniteDecoderLayer,
        GraniteModel,
        GraniteForCausalLM,
    )
except:
    from packaging.version import Version

    transformers_version = Version(transformers_version)
    if not transformers_version >= Version("4.45.0"):
        raise ImportError(
            f"Unsloth: Your transformers version of {transformers_version} does not support Gemma2.\n"\
            f"The minimum required version is 4.42.3.\n"\
            f'Try `pip install --upgrade "transformers>=4.42.3"`\n'\
            f"to obtain the latest transformers build, then restart this session."\
        )
    pass
pass

from transformers.modeling_attn_mask_utils import (
    _prepare_4d_causal_attention_mask_for_sdpa,
)

# For Pytorch 2.1.1
try:
    from transformers.models.granite.modeling_granite import (
        GraniteSdpaAttention,
        GraniteFlashAttention2,
    )
except:
    GraniteSdpaAttention   = GraniteAttention
    GraniteFlashAttention2 = GraniteAttention
pass

def GraniteAttention_fast_forward(
    self,
    hidden_states:        torch.Tensor,
    causal_mask:          Optional[BlockDiagonalCausalMask] = None,
    attention_mask:       Optional[torch.Tensor] = None,
    position_ids:         Optional[torch.LongTensor] = None,
    past_key_value:       Optional[Tuple[torch.Tensor]] = None,
    output_attentions:    bool = False,
    use_cache:            bool = False,
    padding_mask:         Optional[torch.LongTensor] = None,
    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    *args, **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    
    # Clear inference
    if hasattr(self, "paged_attention"):
        del self.paged_attention_K
        del self.paged_attention_V
        del self.paged_attention
        del self.temp_QA
        del self.temp_KV
        del self.RH_Q
        del self.attention
    pass

    bsz, q_len, _ = hidden_states.size()

    n_heads    = self.num_heads
    n_groups   = self.num_key_value_groups
    n_kv_heads = self.num_key_value_heads
    head_dim   = self.head_dim
    assert(n_kv_heads * n_groups == n_heads)

    Q, K, V = self.apply_qkv(self, hidden_states)
    Q = Q.view(bsz, q_len, n_heads,    head_dim).transpose(1, 2)
    K = K.view(bsz, q_len, n_kv_heads, head_dim).transpose(1, 2)
    V = V.view(bsz, q_len, n_kv_heads, head_dim).transpose(1, 2)

    kv_seq_len = K.shape[-2]
    if past_key_value is not None:
        kv_seq_len += past_key_value[0].shape[-2]

    assert position_embeddings is not None
    cos, sin = position_embeddings
    if position_ids is None:
        Q, K = fast_rope_embedding(Q, K, cos, sin)
    else:
        Q, K = inplace_rope_embedding(Q, K, cos, sin, position_ids)

    if past_key_value is not None:
        K = torch.cat([past_key_value[0], K], dim = 2)
        V = torch.cat([past_key_value[1], V], dim = 2)
    pass
    past_key_value = (K, V) if use_cache else None

    # Attention module
    if (not HAS_FLASH_ATTENTION and attention_mask is None):
        # Xformers memory efficient attention
        Q = Q.transpose(1, 2)
        K = K.transpose(1, 2)
        V = V.transpose(1, 2)
        K_M = V_M = bsz * kv_seq_len
        Q_M = bsz * q_len

        # Group query attention
        K = K  .view(bsz, kv_seq_len, n_kv_heads,        1, head_dim)
        V = V  .view(bsz, kv_seq_len, n_kv_heads,        1, head_dim)
        K = K.expand(bsz, kv_seq_len, n_kv_heads, n_groups, head_dim)
        V = V.expand(bsz, kv_seq_len, n_kv_heads, n_groups, head_dim)
        if hidden_states.requires_grad:
            K = K.reshape(bsz, kv_seq_len, n_heads, head_dim)
            V = V.reshape(bsz, kv_seq_len, n_heads, head_dim)
        else:
            # Xformers does support the forward pass though
            Q = Q.view(bsz, q_len, n_kv_heads, n_groups, head_dim)
        pass

        A = xformers_attention(Q, K, V, attn_bias = causal_mask, scale=self.scaling)
        A = A.view(bsz, q_len, n_heads, head_dim)

    elif HAS_FLASH_ATTENTION and attention_mask is None:
        Q = Q.transpose(1, 2)
        K = K.transpose(1, 2)
        V = V.transpose(1, 2)
        window = (kv_seq_len, kv_seq_len)
        A = flash_attn_func(Q, K, V, causal = True, window_size = window, softmax_scale=self.scaling)
    else:
        # Grouped query attention
        # if n_groups != 1:
        K = K[:, :, None, :, :].expand(bsz, n_kv_heads, n_groups, kv_seq_len, head_dim)
        V = V[:, :, None, :, :].expand(bsz, n_kv_heads, n_groups, kv_seq_len, head_dim)
        K = K.reshape(bsz, n_heads, kv_seq_len, head_dim)
        V = V.reshape(bsz, n_heads, kv_seq_len, head_dim)
        # pass
        # Must be contiguous or else results are False!
        # https://github.com/pytorch/pytorch/issues/112577
        Q, K, V = Q.contiguous(), K.contiguous(), V.contiguous()
        # Needs (batch_size, n_heads, seq_len, head_dim)
        # is_casual and attention_mask must not be both set!
        A = scaled_dot_product_attention(Q, K, V, attn_mask = attention_mask, scale = self.scaling, is_causal = False)
        # Go back to (batch_size, seq_len, n_heads, head_dim)
        A = A.transpose(1, 2).contiguous()
    pass
    
    attn_output = A.reshape(bsz, q_len, n_heads*head_dim)
    attn_output = self.apply_o(self, attn_output)
    attn_weights = None
    return attn_output, attn_weights, past_key_value
pass


def GraniteDecoderLayer_fast_forward(
    self,
    hidden_states:        torch.Tensor,
    causal_mask:          Optional[BlockDiagonalCausalMask] = None,
    attention_mask:       Optional[torch.Tensor] = None,
    position_ids:         Optional[torch.LongTensor] = None,
    past_key_value:       Optional[Tuple[torch.Tensor]] = None,
    output_attentions:    Optional[bool] = False,
    use_cache:            Optional[bool] = False,
    padding_mask:         Optional[torch.LongTensor] = None,
    position_embeddings:  Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    *args, **kwargs,
):
    if use_cache and hasattr(self, "_flag_for_generation"): #past_key_value is not None:
        residual = hidden_states
        hidden_states = fast_rms_layernorm_inference(self.input_layernorm, hidden_states)
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            causal_mask=causal_mask,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            padding_mask=padding_mask,
            position_embeddings = position_embeddings,
            _flag_for_generation=self._flag_for_generation,
        )
        hidden_states = torch.add(residual, hidden_states, alpha = self.config.residual_multiplier)

        # Fully Connected
        residual = hidden_states
        hidden_states = fast_rms_layernorm_inference(self.post_attention_layernorm, hidden_states)
        hidden_states = fast_swiglu_inference(self.mlp, hidden_states)
        hidden_states = torch.add(residual, hidden_states, alpha = self.config.residual_multiplier)
    else:
        residual = hidden_states
        hidden_states = fast_rms_layernorm(self.input_layernorm, hidden_states)
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            causal_mask=causal_mask,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            padding_mask=padding_mask,
            position_embeddings = position_embeddings,
        )
        hidden_states = torch.add(residual, hidden_states, alpha = self.config.residual_multiplier)

        # Fully Connected
        residual = hidden_states
        hidden_states = fast_rms_layernorm(self.post_attention_layernorm, hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = torch.add(residual, hidden_states, alpha = self.config.residual_multiplier)
    pass

    outputs = (hidden_states,)
    if output_attentions: outputs += (self_attn_weights,)
    if use_cache: outputs += (present_key_value,)
    return outputs
pass


from math import sqrt as math_sqrt
KV_CACHE_INCREMENT = 256 # KV Cache update size
torch_nn_functional_softmax = torch.nn.functional.softmax
torch_matmul = torch.matmul
torch_tanh   = torch.tanh

def GraniteAttention_fast_forward_inference(
    self,
    hidden_states:  torch.Tensor,
    past_key_value: Optional[Tuple[torch.Tensor]],
    position_ids,
    do_prefill = False,
    attention_mask = None,
    use_sliding_window = False,
    position_embeddings : Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
    
    assert position_embeddings is not None, f"Granite model requires position embeddings to be specified"

    Xn = hidden_states
    bsz, _, hd = hidden_states.size()
    K1, V1 = past_key_value
    dtype = Xn.dtype

    n_heads    = self.num_heads
    n_groups   = self.num_key_value_groups
    n_kv_heads = self.num_key_value_heads
    head_dim   = self.head_dim
    attention_size = n_heads*head_dim
    # assert(n_kv_heads * n_groups == n_heads)
    seq_len = K1.shape[-2]
    kv_seq_len = seq_len + 1

    # Prefill phase
    # if not hasattr(self, "paged_attention"):
    if do_prefill:
        self.paged_attention = torch.empty((KV_CACHE_INCREMENT+seq_len+1, 2, bsz, n_kv_heads, head_dim), dtype = dtype, device = "cuda:0")
        self.paged_attention_K = self.paged_attention[:,0]
        self.paged_attention_V = self.paged_attention[:,1]
        self.paged_attention_K[:seq_len] = K1.permute(2, 0, 1, 3)
        self.paged_attention_V[:seq_len] = V1.permute(2, 0, 1, 3)
        self.temp_QA = torch.empty((2, bsz, 1, attention_size), dtype = dtype, device = "cuda:0")
        self.temp_KV = torch.empty((2, bsz, 1, n_kv_heads*head_dim), dtype = dtype, device = "cuda:0")
        self.RH_Q = torch.empty((bsz, n_heads, 1, head_dim), dtype = dtype, device = "cuda:0")
        # Only for Gemma2
        self.temp_O  = torch.empty((1, bsz, self.hidden_size), dtype = dtype, device = "cuda:0")
        self.attention = torch.empty((bsz, n_heads, 1, KV_CACHE_INCREMENT+seq_len), dtype = dtype, device = "cuda:0")


        self.half_head_dim = head_dim // 2
    elif kv_seq_len >= self.paged_attention.shape[0]:
        self.paged_attention.resize_((self.paged_attention.shape[0]+KV_CACHE_INCREMENT, 2, bsz, n_kv_heads, head_dim))
        self.paged_attention_K = self.paged_attention[:,0]
        self.paged_attention_V = self.paged_attention[:,1]
        self.attention.resize_((bsz, n_heads, 1, self.attention.shape[-1]+KV_CACHE_INCREMENT))
    pass

    Qn = fast_linear_forward(self.q_proj, Xn, out = self.temp_QA[0])
    Kn = fast_linear_forward(self.k_proj, Xn, out = self.temp_KV[0])
    Vn = fast_linear_forward(self.v_proj, Xn, out = self.temp_KV[1])
    Qn = Qn.view(bsz, 1, n_heads,    head_dim).transpose(1, 2)
    Kn = Kn.view(bsz, 1, n_kv_heads, head_dim).transpose(1, 2)
    Vn = Vn.view(bsz, 1, n_kv_heads, head_dim).transpose(1, 2)

    # cos, sin = self.rotary_emb(Vn, seq_len = kv_seq_len)
    # Qn, Kn = inplace_rope_embedding(Qn, Kn, cos, sin, position_ids)
    cos, sin = position_embeddings
    cos, sin = cos[position_ids], sin[position_ids]
    h = self.half_head_dim

    RH_Q = self.RH_Q
    RH_Q[:,:,:,:h] = Qn[:,:,:,h:]
    RH_Q[:,:,:,h:] = Qn[:,:,:,:h]
    torch.neg(RH_Q[:,:,:,:h], out = RH_Q[:,:,:,:h])
    Qn *= cos
    Qn.addcmul_(RH_Q, sin)

    RH_K = RH_Q[:,:n_kv_heads,:,:] # torch.empty((n_kv_heads, 1, head_dim), dtype = dtype, device = "cuda:0")
    RH_K[:,:,:,:h] = Kn[:,:,:,h:]
    RH_K[:,:,:,h:] = Kn[:,:,:,:h]
    torch.neg(RH_K[:,:,:,:h], out = RH_K[:,:,:,:h])
    Kn *= cos
    Kn.addcmul_(RH_K, sin)
    
    # New KV cache
    # Kn = torch.cat([K1, Kn], dim = 2)
    # Vn = torch.cat([V1, Vn], dim = 2)
    self.paged_attention_K[seq_len] = Kn.permute(2, 0, 1, 3)
    self.paged_attention_V[seq_len] = Vn.permute(2, 0, 1, 3)
    Kn = self.paged_attention_K[:kv_seq_len].permute(1, 2, 0, 3)
    Vn = self.paged_attention_V[:kv_seq_len].permute(1, 2, 0, 3)

    # Grouped query attention
    _, _, cached_len, _ = Kn.shape
    if n_groups != 1:
        Kn = Kn[:, :, None, :, :].expand(bsz, n_kv_heads, n_groups, cached_len, head_dim)
        Vn = Vn[:, :, None, :, :].expand(bsz, n_kv_heads, n_groups, cached_len, head_dim)
        Kn = Kn.reshape(bsz, n_heads, cached_len, head_dim)
        Vn = Vn.reshape(bsz, n_heads, cached_len, head_dim)
    pass
    # else:
    #     Kn, Vn = Kn, Vn
    # pass

    Qn *= self.scaling
    A = torch_matmul(Qn, Kn.transpose(2, 3), out = self.attention[:,:,:,:cached_len])
    
    # if attention_mask is not None: A += attention_mask # Must add attention_mask for batched

    A[:] = torch_nn_functional_softmax(A, dim = -1, dtype = torch.float32)#.to(A.dtype)
    A = torch_matmul(A, Vn, out = Qn)
    # else:
    #     A = scaled_dot_product_attention(Qn, Kn, Vn, attn_mask = attention_mask, is_causal = False)
    # pass
    A = A.transpose(1, 2)
    A = A.reshape(bsz, 1, attention_size)
    A = fast_linear_forward(self.o_proj, A, out = self.temp_O)
    return A, (Kn, Vn)
pass


# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L825
# @torch.inference_mode
def GraniteModel_fast_forward_inference(
    self,
    input_ids,
    past_key_values,
    position_ids,
    attention_mask = None,
):
    input_ids = input_ids[:,:self.max_seq_length]
    hidden_states = self.model.embed_tokens(input_ids)
    hidden_states = hidden_states.to(self.config.torch_dtype)
    hidden_states *= self.model.embedding_multiplier

    bsz, q_len, hd = hidden_states.shape
    seq_len = past_key_values[0][0].shape[-2]
    if bsz != 1:
        attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
            attention_mask,
            (bsz, q_len),
            hidden_states,
            seq_len,
        )
    else:
        attention_mask = None
    pass

    position_embeddings = self.model.rotary_emb(hidden_states, position_ids, self.max_seq_length)

    next_decoder_cache = []
    for idx, decoder_layer in enumerate(self.model.layers):

        residual = hidden_states
        hidden_states = fast_rms_layernorm_inference(decoder_layer.input_layernorm, hidden_states)
        hidden_states, present_key_value = GraniteAttention_fast_forward_inference(
            decoder_layer.self_attn,
            hidden_states = hidden_states,
            past_key_value = past_key_values[idx],
            position_ids = position_ids,
            attention_mask = attention_mask,
            do_prefill = not hasattr(decoder_layer.self_attn, "paged_attention"),
            position_embeddings = position_embeddings,
        )

        hidden_states = torch.add(residual, hidden_states, alpha = self.config.residual_multiplier)

        residual = hidden_states
        hidden_states = fast_rms_layernorm_inference(decoder_layer.post_attention_layernorm, hidden_states)
        hidden_states = fast_swiglu_inference(decoder_layer.mlp, hidden_states)
        hidden_states = torch.add(residual, hidden_states, alpha = self.config.residual_multiplier)

        next_decoder_cache.append(present_key_value)
    pass
    hidden_states = fast_rms_layernorm_inference(self.model.norm, hidden_states)

    return BaseModelOutputWithPast(
        last_hidden_state = hidden_states,
        past_key_values = next_decoder_cache,
        hidden_states = [],
        attentions = [],
    )
pass

class GraniteRotaryEmbedding(LlamaRotaryEmbedding):
    def __init__(self, config):
        super().__init__(config = config)

class FastGraniteModel(FastLlamaModel):

    @staticmethod
    def pre_patch():
        init_name, function = patch_linear_scaling(
            model_name         = "granite",
            rope_module        = GraniteRotaryEmbedding,
            scaled_rope_module = LlamaLinearScalingRotaryEmbedding,
            attention_module   = GraniteAttention,
        )
        if init_name is not None:
            exec(function, globals())
            GraniteAttention.__init__  = eval(init_name)
        pass
        GraniteAttention      .forward = GraniteAttention_fast_forward
        GraniteSdpaAttention  .forward = GraniteAttention_fast_forward
        GraniteFlashAttention2.forward = GraniteAttention_fast_forward
        GraniteDecoderLayer   .forward = GraniteDecoderLayer_fast_forward
        GraniteModel          .forward = LlamaModel_fast_forward
        GraniteForCausalLM    .forward = CausalLM_fast_forward(GraniteModel_fast_forward_inference)
        PeftModelForCausalLM .forward = PeftModelForCausalLM_fast_forward
        fix_prepare_inputs_for_generation(GraniteForCausalLM)

        import transformers.models.granite.modeling_granite
        transformers.models.granite.modeling_granite.GraniteRotaryEmbedding = GraniteRotaryEmbedding

        return
    pass


    @staticmethod
    def post_patch(model):

        # Torch.compile fails on embedding matrix??
        # Workaround randomnly fixes it for torch versions < 2.2
        model.model.embed_tokens = torch.nn.Embedding.from_pretrained(model.model.embed_tokens.weight)
        model.config.update({"unsloth_version" : __version__})

        # We also do this for the lm_head
        lm_head = torch.nn.Linear(1, 1, bias = None)
        del lm_head.weight
        lm_head.weight = model.lm_head.weight
        lm_head.in_features  = lm_head.weight.shape[1]
        lm_head.out_features = lm_head.weight.shape[0]
        model.lm_head = lm_head

        # Granite has tied weights! This means lm_head == embed_tokens
        if model.model.embed_tokens.weight.data_ptr() != model.lm_head.weight.data_ptr():
            lm_head = torch.nn.Linear(1, 1, bias = None)
            del lm_head.weight
            lm_head.weight = model.model.embed_tokens.weight
            lm_head.in_features  = lm_head.weight.shape[1]
            lm_head.out_features = lm_head.weight.shape[0]
            model.lm_head = lm_head
        pass

        # Also patch all dtypes - BnB seems to not allocate the correct type?
        # BnB default dtype seems to be float16!
        correct_dtype = lm_head.weight.dtype

        for name, module in model.named_modules():
            if isinstance(module, (Bnb_Linear4bit, Peft_Linear4bit)):
                weight = module.weight
                quant_state = weight.quant_state

                if type(quant_state) is list:
                    # BnB seems to have float16 as default!
                    module.weight.quant_state[2] = correct_dtype # Cast to correct dtype
                else:
                    # https://github.com/TimDettmers/bitsandbytes/pull/763/files
                    quant_state.dtype = correct_dtype
                pass
            pass
            # Downcast RoPE embedding to correct data type
            if (name.endswith("rotary_emb") or hasattr(module, "cos_cached")):

                if hasattr(module, "cos_cached") and \
                    (module.cos_cached.dtype != correct_dtype):

                    module.cos_cached = module.cos_cached.to(correct_dtype)
                    module.sin_cached = module.sin_cached.to(correct_dtype)

                elif hasattr(module, "short_cos_cached") and \
                    (module.short_cos_cached.dtype != correct_dtype):
                    
                    module.short_cos_cached = module.short_cos_cached.to(correct_dtype)
                    module.short_sin_cached = module.short_sin_cached.to(correct_dtype)
                pass
            pass
        pass

        # Clear deleted GPU items
        import gc
        for _ in range(3):
            gc.collect()
            torch.cuda.empty_cache()
        return model
    pass
pass