File size: 6,858 Bytes
c4bfc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from functools import lru_cache
from transformers.models.llama.modeling_llama import logger
import os

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : True,
    "shape_padding"     : True,
    "trace.enabled"     : os.environ.get("UNSLOTH_COMPILE_DEBUG", "0") == "1",
    "triton.cudagraphs" : False,
}

# Flex Attention supported from torch 2.5 onwards only
try:
    from torch.nn.attention.flex_attention import (
        flex_attention as _flex_attention,
        create_block_mask as _create_block_mask,
    )
    _flex_attention = torch.compile(_flex_attention, dynamic = True, options = torch_compile_options)
    HAS_FLEX_ATTENTION = False
except:
    HAS_FLEX_ATTENTION = False
pass


if not HAS_FLEX_ATTENTION:

    # Logit softcapping
    @torch.compile(fullgraph = True, dynamic = True, options = torch_compile_options)
    def slow_attention_softcapping(Q, K, V, causal_mask, self, bsz, q_len):
        n_heads    = self.num_heads
        head_dim   = self.head_dim
        n_kv_heads = self.num_key_value_heads
        n_groups   = self.num_key_value_groups
        
        # Grouped query attention
        K = K[:, :, None, :, :].expand(bsz, n_kv_heads, n_groups, q_len, head_dim)
        V = V[:, :, None, :, :].expand(bsz, n_kv_heads, n_groups, q_len, head_dim)
        K = K.reshape(bsz, n_heads, q_len, head_dim)
        V = V.reshape(bsz, n_heads, q_len, head_dim)

        # See https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
        # Gemma 9b should use 256 and not 224 (hs / nah). 27b uses the below
        # We default to using the config file itself
        # s = self.config.hidden_size // self.config.num_attention_heads
        s = self.config.query_pre_attn_scalar
        t = self.config.attn_logit_softcapping

        Q = Q * torch.tensor(s**-0.5, dtype = Q.dtype) # Follow Keras exactly
        A = torch.matmul(Q, K.transpose(2, 3))
        A = t * torch.tanh(A / t) # Logit softcapping
        A += causal_mask[:q_len, :q_len]
        # Much slower in torch compile!
        # A.masked_fill_(causal_mask[:q_len, :q_len], -float("inf"))
        A = torch.nn.functional.softmax(A, dim = -1, dtype = torch.float32).to(Q.dtype)
        A = torch.matmul(A, V)
        A = A.transpose(1, 2).contiguous()
        A = A.reshape(bsz, q_len, n_heads*head_dim)
        return A
    pass

    create_flex_attention_causal_mask = None
    create_flex_attention_sliding_window_mask = None
else:
    # See https://github.com/pytorch-labs/attention-gym/blob/main/examples/flex_attn.ipynb
    # for more examples
    # BSD 3-Clause License Copyright (c) 2023, Driss Guessous, Horace He et al
    import functools, math

    def generate_tanh_softcap(t):
        def tanh_softcap(x, b, h, q_idx, kv_idx):
            return t * torch.tanh(x / t)
        return tanh_softcap
    pass
    def causal_masker(b, h, q_idx, kv_idx):
        return q_idx >= kv_idx
    pass

    @functools.lru_cache
    def sliding_window_masker(size = 4096):
        def sliding_window(b, h, q_idx, kv_idx):
            causal_mask = q_idx >= kv_idx
            window_mask = q_idx - kv_idx <= size 
            return causal_mask & window_mask
        return sliding_window
    pass

    @functools.lru_cache
    def create_block_mask(mask, n = 128):
        return _create_block_mask(
            mask, 1, 1, n, n,
            BLOCK_SIZE = 128,
            _compile = True,
        )
    pass

    def create_flex_attention_causal_mask(max_seq_length = 8192):
        causal_mask = create_block_mask(causal_masker, max_seq_length)
        return causal_mask
    pass

    def create_flex_attention_sliding_window_mask(max_seq_length = 8192, sliding_window = 4096):
        sliding_masker = sliding_window_masker(sliding_window)
        causal_mask = create_block_mask(sliding_masker, max_seq_length)
        return causal_mask
    pass

    @functools.lru_cache
    def flex_attention(s, t):
        scale = 1.0 / math.sqrt(s)
        score_mod = generate_tanh_softcap(t)
        return functools.partial(
            _flex_attention, score_mod = score_mod, scale = scale, enable_gqa = True,
        )
    pass
    
    def slow_attention_softcapping(Q, K, V, causal_mask, self, bsz, q_len):
        n_heads    = self.num_heads
        head_dim   = self.head_dim
        s = self.config.query_pre_attn_scalar
        t = self.config.attn_logit_softcapping
        fx = flex_attention(s, t)
        A = fx(query = Q, key = K, value = V, block_mask = causal_mask)
        A = A.transpose(1, 2).contiguous()
        A = A.reshape(bsz, q_len, n_heads*head_dim)
        return A
    pass
pass


torch_matmul = torch.matmul
torch_tanh   = torch.tanh
torch_nn_functional_softmax = torch.nn.functional.softmax
def slow_inference_attention_softcapping(Q, K, V, causal_mask, self, bsz, q_len):
    n_heads    = self.num_heads
    head_dim   = self.head_dim
    n_kv_heads = self.num_key_value_heads
    n_groups   = self.num_key_value_groups
    
    # Grouped query attention
    K = K[:, :, None, :, :].expand(bsz, n_kv_heads, n_groups, q_len, head_dim)
    V = V[:, :, None, :, :].expand(bsz, n_kv_heads, n_groups, q_len, head_dim)
    K = K.reshape(bsz, n_heads, q_len, head_dim)
    V = V.reshape(bsz, n_heads, q_len, head_dim)

    # See https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
    # Gemma 9b should use 256 and not 224 (hs / nah). 27b uses the below
    # We default to using the config file itself
    # s = self.config.hidden_size // self.config.num_attention_heads
    s = self.config.query_pre_attn_scalar
    t = self.config.attn_logit_softcapping

    Q = Q * torch.tensor(s**-0.5, dtype = Q.dtype) # Follow Keras exactly
    A = torch_matmul(Q, K.transpose(2, 3))

    # Logit softcapping
    A /= t; torch_tanh(A, out = A); A *= t;
    A += causal_mask[:q_len, :q_len]
    # Much slower in torch compile!
    # A.masked_fill_(causal_mask[:q_len, :q_len], -float("inf"))
    A = torch_nn_functional_softmax(A, dim = -1, dtype = torch.float32).to(Q.dtype)
    A = torch_matmul(A, V)
    A = A.transpose(1, 2).contiguous()
    A = A.reshape(bsz, q_len, n_heads*head_dim)
    return A
pass