DLight1551
commited on
Commit
·
18cd0b0
1
Parent(s):
ac98504
update
Browse files- ixc_utils.py +4 -1
- ixc_utils.py~ +139 -0
ixc_utils.py
CHANGED
@@ -124,7 +124,10 @@ def load_video(video_path, num_frm=32, start=None, end=None):
|
|
124 |
start_idx = 0 if start is None else start
|
125 |
end_idx = len(vid) if end is None else end
|
126 |
all_pos = list(range(start_idx, end_idx, t_stride))
|
127 |
-
|
|
|
|
|
|
|
128 |
if len(images) > num_frm:
|
129 |
num_frm = min(num_frm, len(images))
|
130 |
step_size = len(images) / (num_frm + 1)
|
|
|
124 |
start_idx = 0 if start is None else start
|
125 |
end_idx = len(vid) if end is None else end
|
126 |
all_pos = list(range(start_idx, end_idx, t_stride))
|
127 |
+
try:
|
128 |
+
images = [vid[i].numpy() for i in all_pos]
|
129 |
+
except:
|
130 |
+
images = [vid[i].asnumpy() for i in all_pos]
|
131 |
if len(images) > num_frm:
|
132 |
num_frm = min(num_frm, len(images))
|
133 |
step_size = len(images) / (num_frm + 1)
|
ixc_utils.py~
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torchvision
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
from torchvision.transforms.functional import InterpolationMode
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
from decord import VideoReader
|
8 |
+
|
9 |
+
def padding_336(b, pad=336):
|
10 |
+
width, height = b.size
|
11 |
+
tar = int(np.ceil(height / pad) * pad)
|
12 |
+
top_padding = 0 # int((tar - height)/2)
|
13 |
+
bottom_padding = tar - height - top_padding
|
14 |
+
left_padding = 0
|
15 |
+
right_padding = 0
|
16 |
+
b = transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
|
17 |
+
|
18 |
+
return b
|
19 |
+
|
20 |
+
def Image_transform(img, hd_num=25):
|
21 |
+
width, height = img.size
|
22 |
+
trans = False
|
23 |
+
if width < height:
|
24 |
+
img = img.transpose(Image.TRANSPOSE)
|
25 |
+
trans = True
|
26 |
+
width, height = img.size
|
27 |
+
ratio = (width/ height)
|
28 |
+
scale = 1
|
29 |
+
while scale*np.ceil(scale/ratio) <= hd_num:
|
30 |
+
scale += 1
|
31 |
+
scale -= 1
|
32 |
+
scale = min(np.ceil(width / 560), scale)
|
33 |
+
new_w = int(scale * 560)
|
34 |
+
new_h = int(new_w / ratio)
|
35 |
+
#print (scale, f'{height}/{new_h}, {width}/{new_w}')
|
36 |
+
|
37 |
+
img = transforms.functional.resize(img, [new_h, new_w],)
|
38 |
+
img = padding_336(img, 560)
|
39 |
+
width, height = img.size
|
40 |
+
if trans:
|
41 |
+
img = img.transpose(Image.TRANSPOSE)
|
42 |
+
|
43 |
+
return img
|
44 |
+
|
45 |
+
|
46 |
+
def Video_transform(img, hd_num=25):
|
47 |
+
width, height = img.size
|
48 |
+
trans = False
|
49 |
+
if width < height:
|
50 |
+
img = img.transpose(Image.TRANSPOSE)
|
51 |
+
trans = True
|
52 |
+
width, height = img.size
|
53 |
+
ratio = (width/ height)
|
54 |
+
scale = 1
|
55 |
+
new_h = int(scale * 560)
|
56 |
+
new_w = int(new_h * ratio)
|
57 |
+
#print (new_h, new_w)
|
58 |
+
|
59 |
+
img = transforms.functional.resize(img, [new_h, new_w],)
|
60 |
+
img = img.transpose(Image.TRANSPOSE)
|
61 |
+
img = padding_336(img, 560)
|
62 |
+
width, height = img.size
|
63 |
+
if not trans:
|
64 |
+
img = img.transpose(Image.TRANSPOSE)
|
65 |
+
|
66 |
+
return img
|
67 |
+
|
68 |
+
def frame2img(imgs):
|
69 |
+
new_imgs = []
|
70 |
+
for img in imgs:
|
71 |
+
w, h = img.size
|
72 |
+
scale = w/h
|
73 |
+
if w > h:
|
74 |
+
new_w = 560 * 2
|
75 |
+
new_h = int(560 * 2 / scale)
|
76 |
+
else:
|
77 |
+
new_w = int(560 * 2 * scale)
|
78 |
+
new_h = 560 * 2
|
79 |
+
img = transforms.functional.resize(img, [new_h, new_w],)
|
80 |
+
new_imgs.append(img)
|
81 |
+
imgs = new_imgs
|
82 |
+
new_w = 0
|
83 |
+
new_h = 0
|
84 |
+
pad = 40
|
85 |
+
font = ImageFont.truetype(os.path.join(config._name_or_path, "SimHei.ttf"), pad)
|
86 |
+
if w > h:
|
87 |
+
for im in imgs:
|
88 |
+
w,h = im.size
|
89 |
+
new_w = max(new_w, w)
|
90 |
+
new_h += h + 10 + pad
|
91 |
+
new_img = Image.new('RGB', (new_w, new_h), 'white')
|
92 |
+
draw = ImageDraw.Draw(new_img)
|
93 |
+
curr_h = 0
|
94 |
+
for idx, im in enumerate(imgs):
|
95 |
+
w,h = im.size
|
96 |
+
new_img.paste(im, (0, pad + curr_h))
|
97 |
+
draw.text((0, curr_h ), f'<IMAGE {idx}>', font=font, fill='black')
|
98 |
+
if idx + 1 < len(imgs):
|
99 |
+
draw.line([(0, pad +curr_h + h +5), (new_w, pad +curr_h + h +5)], fill = 'black', width=2)
|
100 |
+
curr_h += h + 10 + pad
|
101 |
+
#print (new_w, new_h)
|
102 |
+
else:
|
103 |
+
for im in imgs:
|
104 |
+
w,h = im.size
|
105 |
+
new_w += w + 10
|
106 |
+
new_h = max(new_h, h)
|
107 |
+
new_h += pad
|
108 |
+
new_img = Image.new('RGB', (new_w, new_h), 'white')
|
109 |
+
draw = ImageDraw.Draw(new_img)
|
110 |
+
curr_w = 0
|
111 |
+
for idx, im in enumerate(imgs):
|
112 |
+
w,h = im.size
|
113 |
+
new_img.paste(im, (curr_w, pad))
|
114 |
+
draw.text((curr_w, 0), f'<IMAGE {idx}>', font=font, fill='black')
|
115 |
+
if idx + 1 < len(imgs):
|
116 |
+
draw.line([(curr_w + w + 5, 0), (curr_w + w + 5, new_h)], fill = 'black', width=2)
|
117 |
+
curr_w += w + 10
|
118 |
+
return new_img
|
119 |
+
|
120 |
+
def load_video(video_path, num_frm=32, start=None, end=None):
|
121 |
+
vid = VideoReader(video_path, num_threads=1)
|
122 |
+
fps = vid.get_avg_fps()
|
123 |
+
t_stride = int(round(float(fps) / int(1)))
|
124 |
+
start_idx = 0 if start is None else start
|
125 |
+
end_idx = len(vid) if end is None else end
|
126 |
+
all_pos = list(range(start_idx, end_idx, t_stride))
|
127 |
+
try:
|
128 |
+
images = [vid[i].numpy() for i in all_pos]
|
129 |
+
except:
|
130 |
+
images = [vid[i].asnumpy() for i in all_pos]
|
131 |
+
if len(images) > num_frm:
|
132 |
+
num_frm = min(num_frm, len(images))
|
133 |
+
step_size = len(images) / (num_frm + 1)
|
134 |
+
indices = [int(i*step_size) for i in range(num_frm)]
|
135 |
+
images = [images[i] for i in indices]
|
136 |
+
images = [Image.fromarray(arr) for arr in images]
|
137 |
+
image = frame2img(images)
|
138 |
+
return image
|
139 |
+
|