File size: 1,808 Bytes
c9dee4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc0-1.0
base_model: bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: NHS-bluebert-binary-random
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# NHS-bluebert-binary-random

This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5886
- Accuracy: 0.8126
- Precision: 0.8063
- Recall: 0.8047
- F1: 0.8055

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0522        | 1.0   | 397  | 0.4105          | 0.8114   | 0.8044    | 0.8094 | 0.8064 |
| 0.0734        | 2.0   | 794  | 0.4493          | 0.7918   | 0.7894    | 0.7994 | 0.7894 |
| 1.3945        | 3.0   | 1191 | 0.5886          | 0.8126   | 0.8063    | 0.8047 | 0.8055 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2