File size: 1,883 Bytes
4ed83f2
 
 
 
 
 
 
f12f154
 
 
 
 
4ed83f2
 
 
 
f12f154
4ed83f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12f154
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: 20230430-001-baseline-mbert-qa-squadv2-ft-clickbait-spoiling
  results: []
datasets:
- Tugay/clickbait-spoiling
- squad_v2
language:
- id
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T-BASELINE001
# 20230430-001-baseline-mbert-qa-squadv2-ft-clickbait-spoiling

This model is a fine-tuned version of [intanm/mbert-squadv2](https://huggingface.co/intanm/mbert-squadv2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.8747

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 200  | 2.8065          |
| No log        | 2.0   | 400  | 2.8088          |
| 2.5698        | 3.0   | 600  | 3.1652          |
| 2.5698        | 4.0   | 800  | 3.5464          |
| 1.1384        | 5.0   | 1000 | 3.8477          |
| 1.1384        | 6.0   | 1200 | 4.1725          |
| 1.1384        | 7.0   | 1400 | 4.5057          |
| 0.4763        | 8.0   | 1600 | 4.7721          |
| 0.4763        | 9.0   | 1800 | 4.8970          |
| 0.2594        | 10.0  | 2000 | 4.8747          |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3