instruction-pretrain commited on
Commit
632ef37
·
verified ·
1 Parent(s): 87d1a3a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -3
README.md CHANGED
@@ -1,3 +1,79 @@
1
- ---
2
- license: llama3
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ language:
4
+ - en
5
+ tags:
6
+ - biology
7
+ - medical
8
+ datasets:
9
+ - EleutherAI/pile
10
+ - Open-Orca/OpenOrca
11
+ - GAIR/lima
12
+ - WizardLM/WizardLM_evol_instruct_V2_196k
13
+ ---
14
+ # Instruction Pre-Training: Language Models are Supervised Multitask Learners
15
+ This repo contains the **biomedicine model developed from Llama3-8B** in our paper **Instruction Pre-Training: Language Models are Supervised Multitask Learners**.
16
+
17
+ We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. **In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.**
18
+
19
+ <p align='center'>
20
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
21
+ </p>
22
+
23
+
24
+ ## Resources
25
+ **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
26
+
27
+ - Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
28
+ - Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
29
+ - General Models Pre-Trained from Scratch:
30
+ - [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
31
+ - [InstructLLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLLM-1.3B)
32
+ - Domain-Specific Models Pre-Trained from Llama3-8B:
33
+ - [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
34
+ - [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)
35
+
36
+
37
+ ## Domain-Adaptive Continued Pre-Training
38
+ Following [AdaptLLM](https://huggingface.co/AdaptLLM/medicine-chat), we augment the domain-specific raw corpora with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer).
39
+
40
+ For example, to chat with the biomedicine-Llama3-8B model:
41
+ ```python
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+
44
+ model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/medicine-Llama3-8B")
45
+ tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/medicine-Llama3-8B")
46
+
47
+ # Put your input here, NO prompt template is required
48
+ user_input = '''Question: Which of the following is an example of monosomy?
49
+ Options:
50
+ - 46,XX
51
+ - 47,XXX
52
+ - 69,XYY
53
+ - 45,X
54
+
55
+ Please provide your choice first and then provide explanations if possible.'''
56
+
57
+ inputs = tokenizer(user_input, return_tensors="pt", add_special_tokens=True).input_ids.to(model.device)
58
+ outputs = model.generate(input_ids=inputs, max_new_tokens=400)[0]
59
+
60
+ answer_start = int(inputs.shape[-1])
61
+ pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
62
+
63
+ print(pred)
64
+ ```
65
+
66
+ ## Citation
67
+ If you find our work helpful, please cite us:
68
+
69
+ [AdaptLLM](https://huggingface.co/papers/2309.09530)
70
+ ```bibtex
71
+ @inproceedings{
72
+ cheng2024adapting,
73
+ title={Adapting Large Language Models via Reading Comprehension},
74
+ author={Daixuan Cheng and Shaohan Huang and Furu Wei},
75
+ booktitle={The Twelfth International Conference on Learning Representations},
76
+ year={2024},
77
+ url={https://openreview.net/forum?id=y886UXPEZ0}
78
+ }
79
+ ```