inrealm commited on
Commit
ecb4267
·
verified ·
1 Parent(s): 4c8e239

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en
3
+ datasets:
4
+ - sentence-transformers/all-nli
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ pipeline_tag: sentence-similarity
9
+ tags:
10
+ - sentence-transformers
11
+ - sentence-similarity
12
+ - feature-extraction
13
+ - generated_from_trainer
14
+ - dataset_size:10
15
+ - loss:MultipleNegativesRankingLoss
16
+ - dataset_size:1000
17
+ widget:
18
+ - source_sentence: A man is jumping unto his filthy bed.
19
+ sentences:
20
+ - A young male is looking at a newspaper while 2 females walks past him.
21
+ - The bed is dirty.
22
+ - The man is on the moon.
23
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
24
+ beach area.
25
+ sentences:
26
+ - A man is ouside near the beach.
27
+ - Three policemen patrol the streets on bikes
28
+ - A man is sitting on his couch.
29
+ - source_sentence: The man is wearing a blue shirt.
30
+ sentences:
31
+ - Near the trashcan the man stood and smoked
32
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
33
+ with water in the background.
34
+ - A man in a black shirt is playing a guitar.
35
+ - source_sentence: The girls are outdoors.
36
+ sentences:
37
+ - Two girls riding on an amusement part ride.
38
+ - a guy laughs while doing laundry
39
+ - Three girls are standing together in a room, one is listening, one is writing
40
+ on a wall and the third is talking to them.
41
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
42
+ sits on the sidewalk smiling.
43
+ sentences:
44
+ - A worker is looking out of a manhole.
45
+ - A man is giving a presentation.
46
+ - The workers are both inside the manhole.
47
+ ---
48
+
49
+ # SentenceTransformer based on BAAI/bge-small-en
50
+
51
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
52
+
53
+ ## Model Details
54
+
55
+ ### Model Description
56
+ - **Model Type:** Sentence Transformer
57
+ - **Base model:** [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
58
+ - **Maximum Sequence Length:** 512 tokens
59
+ - **Output Dimensionality:** 384 tokens
60
+ - **Similarity Function:** Cosine Similarity
61
+ - **Training Dataset:**
62
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
63
+ - **Language:** en
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
69
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
70
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
71
+
72
+ ### Full Model Architecture
73
+
74
+ ```
75
+ SentenceTransformer(
76
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
77
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
78
+ (2): Normalize()
79
+ )
80
+ ```
81
+
82
+ ## Usage
83
+
84
+ ### Direct Usage (Sentence Transformers)
85
+
86
+ First install the Sentence Transformers library:
87
+
88
+ ```bash
89
+ pip install -U sentence-transformers
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+ ```python
94
+ from sentence_transformers import SentenceTransformer
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SentenceTransformer("inrealm/bge-base-all-nli-triplet")
98
+ # Run inference
99
+ sentences = [
100
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
101
+ 'A worker is looking out of a manhole.',
102
+ 'The workers are both inside the manhole.',
103
+ ]
104
+ embeddings = model.encode(sentences)
105
+ print(embeddings.shape)
106
+ # [3, 384]
107
+
108
+ # Get the similarity scores for the embeddings
109
+ similarities = model.similarity(embeddings, embeddings)
110
+ print(similarities.shape)
111
+ # [3, 3]
112
+ ```
113
+
114
+ <!--
115
+ ### Direct Usage (Transformers)
116
+
117
+ <details><summary>Click to see the direct usage in Transformers</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Downstream Usage (Sentence Transformers)
124
+
125
+ You can finetune this model on your own dataset.
126
+
127
+ <details><summary>Click to expand</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ <!--
139
+ ## Bias, Risks and Limitations
140
+
141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
142
+ -->
143
+
144
+ <!--
145
+ ### Recommendations
146
+
147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
148
+ -->
149
+
150
+ ## Training Details
151
+
152
+ ### Training Dataset
153
+
154
+ #### sentence-transformers/all-nli
155
+
156
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
157
+ * Size: 1,000 training samples
158
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
159
+ * Approximate statistics based on the first 1000 samples:
160
+ | | anchor | positive | negative |
161
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
162
+ | type | string | string | string |
163
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
164
+ * Samples:
165
+ | anchor | positive | negative |
166
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
167
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
168
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
169
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
170
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
171
+ ```json
172
+ {
173
+ "scale": 20.0,
174
+ "similarity_fct": "cos_sim"
175
+ }
176
+ ```
177
+
178
+ ### Evaluation Dataset
179
+
180
+ #### sentence-transformers/all-nli
181
+
182
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
183
+ * Size: 6,584 evaluation samples
184
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
185
+ * Approximate statistics based on the first 1000 samples:
186
+ | | anchor | positive | negative |
187
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
188
+ | type | string | string | string |
189
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
190
+ * Samples:
191
+ | anchor | positive | negative |
192
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
193
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
194
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
195
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
196
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
197
+ ```json
198
+ {
199
+ "scale": 20.0,
200
+ "similarity_fct": "cos_sim"
201
+ }
202
+ ```
203
+
204
+ ### Training Hyperparameters
205
+ #### Non-Default Hyperparameters
206
+
207
+ - `eval_strategy`: steps
208
+ - `per_device_train_batch_size`: 16
209
+ - `per_device_eval_batch_size`: 16
210
+ - `num_train_epochs`: 1
211
+ - `warmup_ratio`: 0.1
212
+ - `fp16`: True
213
+ - `batch_sampler`: no_duplicates
214
+
215
+ #### All Hyperparameters
216
+ <details><summary>Click to expand</summary>
217
+
218
+ - `overwrite_output_dir`: False
219
+ - `do_predict`: False
220
+ - `eval_strategy`: steps
221
+ - `prediction_loss_only`: True
222
+ - `per_device_train_batch_size`: 16
223
+ - `per_device_eval_batch_size`: 16
224
+ - `per_gpu_train_batch_size`: None
225
+ - `per_gpu_eval_batch_size`: None
226
+ - `gradient_accumulation_steps`: 1
227
+ - `eval_accumulation_steps`: None
228
+ - `learning_rate`: 5e-05
229
+ - `weight_decay`: 0.0
230
+ - `adam_beta1`: 0.9
231
+ - `adam_beta2`: 0.999
232
+ - `adam_epsilon`: 1e-08
233
+ - `max_grad_norm`: 1.0
234
+ - `num_train_epochs`: 1
235
+ - `max_steps`: -1
236
+ - `lr_scheduler_type`: linear
237
+ - `lr_scheduler_kwargs`: {}
238
+ - `warmup_ratio`: 0.1
239
+ - `warmup_steps`: 0
240
+ - `log_level`: passive
241
+ - `log_level_replica`: warning
242
+ - `log_on_each_node`: True
243
+ - `logging_nan_inf_filter`: True
244
+ - `save_safetensors`: True
245
+ - `save_on_each_node`: False
246
+ - `save_only_model`: False
247
+ - `restore_callback_states_from_checkpoint`: False
248
+ - `no_cuda`: False
249
+ - `use_cpu`: False
250
+ - `use_mps_device`: False
251
+ - `seed`: 42
252
+ - `data_seed`: None
253
+ - `jit_mode_eval`: False
254
+ - `use_ipex`: False
255
+ - `bf16`: False
256
+ - `fp16`: True
257
+ - `fp16_opt_level`: O1
258
+ - `half_precision_backend`: auto
259
+ - `bf16_full_eval`: False
260
+ - `fp16_full_eval`: False
261
+ - `tf32`: None
262
+ - `local_rank`: 0
263
+ - `ddp_backend`: None
264
+ - `tpu_num_cores`: None
265
+ - `tpu_metrics_debug`: False
266
+ - `debug`: []
267
+ - `dataloader_drop_last`: False
268
+ - `dataloader_num_workers`: 0
269
+ - `dataloader_prefetch_factor`: None
270
+ - `past_index`: -1
271
+ - `disable_tqdm`: False
272
+ - `remove_unused_columns`: True
273
+ - `label_names`: None
274
+ - `load_best_model_at_end`: False
275
+ - `ignore_data_skip`: False
276
+ - `fsdp`: []
277
+ - `fsdp_min_num_params`: 0
278
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
279
+ - `fsdp_transformer_layer_cls_to_wrap`: None
280
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
281
+ - `deepspeed`: None
282
+ - `label_smoothing_factor`: 0.0
283
+ - `optim`: adamw_torch
284
+ - `optim_args`: None
285
+ - `adafactor`: False
286
+ - `group_by_length`: False
287
+ - `length_column_name`: length
288
+ - `ddp_find_unused_parameters`: None
289
+ - `ddp_bucket_cap_mb`: None
290
+ - `ddp_broadcast_buffers`: False
291
+ - `dataloader_pin_memory`: True
292
+ - `dataloader_persistent_workers`: False
293
+ - `skip_memory_metrics`: True
294
+ - `use_legacy_prediction_loop`: False
295
+ - `push_to_hub`: False
296
+ - `resume_from_checkpoint`: None
297
+ - `hub_model_id`: None
298
+ - `hub_strategy`: every_save
299
+ - `hub_private_repo`: False
300
+ - `hub_always_push`: False
301
+ - `gradient_checkpointing`: False
302
+ - `gradient_checkpointing_kwargs`: None
303
+ - `include_inputs_for_metrics`: False
304
+ - `eval_do_concat_batches`: True
305
+ - `fp16_backend`: auto
306
+ - `push_to_hub_model_id`: None
307
+ - `push_to_hub_organization`: None
308
+ - `mp_parameters`:
309
+ - `auto_find_batch_size`: False
310
+ - `full_determinism`: False
311
+ - `torchdynamo`: None
312
+ - `ray_scope`: last
313
+ - `ddp_timeout`: 1800
314
+ - `torch_compile`: False
315
+ - `torch_compile_backend`: None
316
+ - `torch_compile_mode`: None
317
+ - `dispatch_batches`: None
318
+ - `split_batches`: None
319
+ - `include_tokens_per_second`: False
320
+ - `include_num_input_tokens_seen`: False
321
+ - `neftune_noise_alpha`: None
322
+ - `optim_target_modules`: None
323
+ - `batch_eval_metrics`: False
324
+ - `batch_sampler`: no_duplicates
325
+ - `multi_dataset_batch_sampler`: proportional
326
+
327
+ </details>
328
+
329
+ ### Framework Versions
330
+ - Python: 3.10.12
331
+ - Sentence Transformers: 3.0.1
332
+ - Transformers: 4.41.2
333
+ - PyTorch: 2.3.0+cu121
334
+ - Accelerate: 0.31.0
335
+ - Datasets: 2.20.0
336
+ - Tokenizers: 0.19.1
337
+
338
+ ## Citation
339
+
340
+ ### BibTeX
341
+
342
+ #### Sentence Transformers
343
+ ```bibtex
344
+ @inproceedings{reimers-2019-sentence-bert,
345
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
346
+ author = "Reimers, Nils and Gurevych, Iryna",
347
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
348
+ month = "11",
349
+ year = "2019",
350
+ publisher = "Association for Computational Linguistics",
351
+ url = "https://arxiv.org/abs/1908.10084",
352
+ }
353
+ ```
354
+
355
+ #### MultipleNegativesRankingLoss
356
+ ```bibtex
357
+ @misc{henderson2017efficient,
358
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
359
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
360
+ year={2017},
361
+ eprint={1705.00652},
362
+ archivePrefix={arXiv},
363
+ primaryClass={cs.CL}
364
+ }
365
+ ```
366
+
367
+ <!--
368
+ ## Glossary
369
+
370
+ *Clearly define terms in order to be accessible across audiences.*
371
+ -->
372
+
373
+ <!--
374
+ ## Model Card Authors
375
+
376
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
377
+ -->
378
+
379
+ <!--
380
+ ## Model Card Contact
381
+
382
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
383
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c58edc027b706578cdb9f3591e7bcb0c1c1f2ba9667d409a8efe0beeaad15c53
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff