innocent-charles commited on
Commit
e1ee1d5
1 Parent(s): 4c2b8f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md CHANGED
@@ -1,3 +1,116 @@
1
  ---
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ datasets:
4
+ - kenyacorpus_v2
5
  license: cc-by-4.0
6
+ model-index:
7
+ - name: innocent-charles/Swahili-question-answer-latest-cased
8
+ results:
9
+ - task:
10
+ type: question-answering
11
+ name: Question Answering
12
+ dataset:
13
+ name: kenyacorpus
14
+ type: kenyacorpus
15
+ config: kenyacorpus
16
+ split: validation
17
+ metrics:
18
+ - name: Exact Match
19
+ type: exact_match
20
+ value: 79.9309
21
+ verified: true
22
+ - name: F1
23
+ type: f1
24
+ value: 82.9501
25
+ verified: true
26
+ - name: total
27
+ type: total
28
+ value: 11869
29
+ verified: true
30
  ---
31
+
32
+ # SWAHILI QUESTION - ANSWER MODEL
33
+
34
+ This is the [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) model, fine-tuned using the [KenyaCorpus](https://github.com/Neurotech-HQ/Swahili-QA-dataset) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering in Swahili Language.
35
+
36
+
37
+ ## Overview
38
+ **Language model used:** bert-base-multilingual-cased
39
+ **Language:** Kiswahili
40
+ **Downstream-task:** Extractive Swahili QA
41
+ **Training data:** KenyaCorpus
42
+ **Eval data:** KenyaCorpus
43
+ **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai)
44
+ **Infrastructure**: Google Colab GPU
45
+
46
+ ## Hyperparameters
47
+
48
+ ```
49
+ batch_size = 16
50
+ n_epochs = 10
51
+ base_LM_model = "bert-base-multilingual-cased"
52
+ max_seq_len = 386
53
+ learning_rate = 3e-5
54
+ lr_schedule = LinearWarmup
55
+ warmup_proportion = 0.2
56
+ doc_stride=128
57
+ max_query_length=64
58
+ ```
59
+
60
+ ## Usage
61
+
62
+ ### In Haystack
63
+ Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
64
+ ```python
65
+ reader = FARMReader(model_name_or_path="innocent-charles/Swahili-question-answer-latest-cased")
66
+ # or
67
+ reader = TransformersReader(model_name_or_path="innocent-charles/Swahili-question-answer-latest-cased",tokenizer="innocent-charles/Swahili-question-answer-latest-cased")
68
+ ```
69
+ For a complete example of ``Swahili-question-answer-latest-cased`` being used for Swahili Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai)
70
+
71
+ ### In Transformers
72
+ ```python
73
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
74
+
75
+ model_name = "innocent-charles/Swahili-question-answer-latest-cased"
76
+
77
+ # a) Get predictions
78
+ nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
79
+ QA_input = {
80
+ 'question': 'Asubuhi ilitupata pambajioi pa hospitali gani?',
81
+ 'context': 'Asubuhi hiyo ilitupata pambajioni pa hospitali ya Uguzwa.'
82
+ }
83
+ res = nlp(QA_input)
84
+
85
+ # b) Load model & tokenizer
86
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
87
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
88
+ ```
89
+
90
+ ## Performance
91
+
92
+ ```
93
+ "exact": 79.87029394424324,
94
+ "f1": 82.91251169582613,
95
+
96
+ "total": 11873,
97
+ "HasAns_exact": 77.93522267206478,
98
+ "HasAns_f1": 84.02838248389763,
99
+ "HasAns_total": 5928,
100
+ "NoAns_exact": 81.79983179142137,
101
+ "NoAns_f1": 81.79983179142137,
102
+ "NoAns_total": 5945
103
+ ```
104
+
105
+ ## Authors
106
+ **Innocent Charles:** [email protected]
107
+
108
+ ## About Me
109
+
110
+ <P>
111
+ I build good things using Artificial Intelligence ,Data and Analytics , with over 3 Years of Experience as Applied AI Engineer & Data scientist from a strong background in Software Engineering ,with passion and extensive experience in Data and Businesses.
112
+ </P>
113
+
114
+
115
+ [Linkedin](https://www.linkedin.com/in/innocent-charles/) | [GitHub](https://github.com/innocent-charles) | [Website](innocentcharles.com)
116
+