Update README.md
Browse files
README.md
CHANGED
@@ -6,7 +6,6 @@ language:
|
|
6 |
- zh
|
7 |
---
|
8 |
# INF-Retriever-v1
|
9 |
-
## Model Overview
|
10 |
- **INF-Retriever-v1** is an LLM-based dense retrieval model developed by [INF TECH](https://www.infly.cn/en).
|
11 |
It is built upon the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model and specifically fine-tuned to excel in retrieval tasks, particularly for Chinese and English data.
|
12 |
|
@@ -71,6 +70,7 @@ embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_ma
|
|
71 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
72 |
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
73 |
print(scores.tolist())
|
|
|
74 |
```
|
75 |
|
76 |
## Evaluation
|
|
|
6 |
- zh
|
7 |
---
|
8 |
# INF-Retriever-v1
|
|
|
9 |
- **INF-Retriever-v1** is an LLM-based dense retrieval model developed by [INF TECH](https://www.infly.cn/en).
|
10 |
It is built upon the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model and specifically fine-tuned to excel in retrieval tasks, particularly for Chinese and English data.
|
11 |
|
|
|
70 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
71 |
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
72 |
print(scores.tolist())
|
73 |
+
# [[86.87025451660156, 67.82366180419922], [59.510135650634766, 82.33667755126953]]
|
74 |
```
|
75 |
|
76 |
## Evaluation
|