update tokenizer & model weights
Browse files- added_tokens.json +10 -0
- config.json +45 -0
- configuration_inflm.py +36 -0
- generation_config.json +9 -0
- model.safetensors +3 -0
- modeling_inflm.py +69 -0
- special_tokens_map.json +40 -0
- tokenization_inflm.py +292 -0
- tokenizer.model +3 -0
- tokenizer_config.json +127 -0
added_tokens.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 96506,
|
3 |
+
"<|end|>": 96500,
|
4 |
+
"<|message|>": 96501,
|
5 |
+
"<|pad|>": 96505,
|
6 |
+
"<|start|>": 96499,
|
7 |
+
"<|tool_end|>": 96504,
|
8 |
+
"<|tool_excute|>": 96503,
|
9 |
+
"<|tool_start|>": 96502
|
10 |
+
}
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"INFLMForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_inflm.INFLMConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_inflm.INFLMForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 8192,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 22016,
|
17 |
+
"layer_norm_eps": 1e-05,
|
18 |
+
"max_position_embeddings": 32768,
|
19 |
+
"mlp_bias": false,
|
20 |
+
"model_type": "inflm",
|
21 |
+
"num_attention_heads": 64,
|
22 |
+
"num_hidden_layers": 48,
|
23 |
+
"num_key_value_heads": 8,
|
24 |
+
"pretraining_tp": 1,
|
25 |
+
"quantization_config": {
|
26 |
+
"bits": 4,
|
27 |
+
"checkpoint_format": "gptq",
|
28 |
+
"damp_percent": 0.1,
|
29 |
+
"desc_act": false,
|
30 |
+
"group_size": 128,
|
31 |
+
"model_file_base_name": "model",
|
32 |
+
"model_name_or_path": null,
|
33 |
+
"quant_method": "gptq",
|
34 |
+
"static_groups": false,
|
35 |
+
"sym": true,
|
36 |
+
"true_sequential": true
|
37 |
+
},
|
38 |
+
"rope_scaling": null,
|
39 |
+
"rope_theta": 500000,
|
40 |
+
"tie_word_embeddings": false,
|
41 |
+
"torch_dtype": "float16",
|
42 |
+
"use_cache": true,
|
43 |
+
"vocab_size": 96512
|
44 |
+
}
|
45 |
+
|
configuration_inflm.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""INFLM model configuration."""
|
21 |
+
|
22 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
23 |
+
|
24 |
+
|
25 |
+
class INFLMConfig(LlamaConfig):
|
26 |
+
model_type = "inflm"
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
layer_norm_eps=1e-5,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
self.layer_norm_eps = layer_norm_eps
|
34 |
+
super().__init__(
|
35 |
+
**kwargs,
|
36 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token_id": 2,
|
3 |
+
"pad_token_id": 3,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"do_sample": true,
|
6 |
+
"top_k": 0,
|
7 |
+
"top_p": 0.8,
|
8 |
+
"transformers_version": "4.39.0"
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:221f16978b78c6605b9bf0ef3858295e953ba0872db70409e538c74d8bb87c1d
|
3 |
+
size 20437774584
|
modeling_inflm.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""PyTorch INFLM model."""
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from transformers.models.llama.modeling_llama import (
|
25 |
+
LlamaDecoderLayer,
|
26 |
+
LlamaModel,
|
27 |
+
LlamaForCausalLM
|
28 |
+
)
|
29 |
+
from .configuration_inflm import INFLMConfig
|
30 |
+
|
31 |
+
_CONFIG_FOR_DOC = "INFLMConfig"
|
32 |
+
|
33 |
+
|
34 |
+
class INFLMDecoderLayer(LlamaDecoderLayer):
|
35 |
+
def __init__(self, config: INFLMConfig, layer_idx: int):
|
36 |
+
super().__init__(config, layer_idx)
|
37 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
38 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
39 |
+
|
40 |
+
|
41 |
+
class INFLMModel(LlamaModel):
|
42 |
+
config_class = INFLMConfig
|
43 |
+
_no_split_modules = ["INFLMDecoderLayer"]
|
44 |
+
|
45 |
+
def __init__(self, config: INFLMConfig):
|
46 |
+
super().__init__(config)
|
47 |
+
self.padding_idx = config.pad_token_id
|
48 |
+
self.vocab_size = config.vocab_size
|
49 |
+
|
50 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
51 |
+
self.layers = nn.ModuleList([INFLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
52 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
53 |
+
|
54 |
+
self.gradient_checkpointing = False
|
55 |
+
# Initialize weights and apply final processing
|
56 |
+
self.post_init()
|
57 |
+
|
58 |
+
|
59 |
+
class INFLMForCausalLM(LlamaForCausalLM):
|
60 |
+
_tied_weights_keys = ["lm_head.weight"]
|
61 |
+
|
62 |
+
def __init__(self, config: INFLMConfig):
|
63 |
+
super().__init__(config)
|
64 |
+
self.model = INFLMModel(config)
|
65 |
+
self.vocab_size = config.vocab_size
|
66 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
67 |
+
|
68 |
+
# Initialize weights and apply final processing
|
69 |
+
self.post_init()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|start|>",
|
4 |
+
"<|end|>",
|
5 |
+
"<|message|>",
|
6 |
+
"<|tool_start|>",
|
7 |
+
"<|tool_excute|>",
|
8 |
+
"<|tool_end|>",
|
9 |
+
"<|pad|>",
|
10 |
+
"<|endoftext|>"
|
11 |
+
],
|
12 |
+
"bos_token": {
|
13 |
+
"content": "<s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"eos_token": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false
|
25 |
+
},
|
26 |
+
"pad_token": {
|
27 |
+
"content": "<pad>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
},
|
33 |
+
"unk_token": {
|
34 |
+
"content": "<unk>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": false,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
}
|
40 |
+
}
|
tokenization_inflm.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
"""Tokenization classes for INFLMTokenizer."""
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
|
28 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
from tokenizers import pre_tokenizers,Regex,decoders
|
32 |
+
from tokenizers.pre_tokenizers import Digits, Split, ByteLevel
|
33 |
+
import os
|
34 |
+
|
35 |
+
# same as gpt4 cl-base-100k
|
36 |
+
PATTERN = Regex("(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+\s+(\S)+")
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
41 |
+
|
42 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
43 |
+
|
44 |
+
|
45 |
+
class INFLMTokenizer(PreTrainedTokenizer):
|
46 |
+
"""
|
47 |
+
Construct a INFLMTokenizer tokenizer based on sentence-piece
|
48 |
+
|
49 |
+
Args:
|
50 |
+
vocab_file (`str`):
|
51 |
+
Path to the vocabulary file.
|
52 |
+
"""
|
53 |
+
|
54 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
55 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
56 |
+
model_input_names = ["input_ids", "attention_mask"]
|
57 |
+
_auto_class = "AutoTokenizer"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vocab_file,
|
62 |
+
unk_token="<unk>",
|
63 |
+
bos_token="<s>",
|
64 |
+
eos_token="</s>",
|
65 |
+
pad_token="<pad>",
|
66 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
67 |
+
add_bos_token=False,
|
68 |
+
add_eos_token=False,
|
69 |
+
decode_with_prefix_space=False,
|
70 |
+
clean_up_tokenization_spaces=False,
|
71 |
+
spaces_between_special_tokens=False,
|
72 |
+
**kwargs,
|
73 |
+
):
|
74 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
75 |
+
self.vocab_file = vocab_file
|
76 |
+
self.add_bos_token = add_bos_token
|
77 |
+
self.add_eos_token = add_eos_token
|
78 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
79 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
80 |
+
self.sp_model.Load(vocab_file)
|
81 |
+
self._no_prefix_space_tokens = None
|
82 |
+
self.pre_tokenizer = pre_tokenizers.Sequence([Split(pattern =PATTERN,behavior = "isolated", invert = False)])
|
83 |
+
super().__init__(
|
84 |
+
bos_token=bos_token,
|
85 |
+
eos_token=eos_token,
|
86 |
+
unk_token=unk_token,
|
87 |
+
pad_token=pad_token,
|
88 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
89 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
90 |
+
**kwargs,
|
91 |
+
)
|
92 |
+
|
93 |
+
""" Initialisation"""
|
94 |
+
|
95 |
+
@property
|
96 |
+
def no_prefix_space_tokens(self):
|
97 |
+
if self._no_prefix_space_tokens is None:
|
98 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
99 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
100 |
+
return self._no_prefix_space_tokens
|
101 |
+
|
102 |
+
@property
|
103 |
+
def vocab_size(self):
|
104 |
+
"""Returns vocab size"""
|
105 |
+
return self.sp_model.get_piece_size()
|
106 |
+
|
107 |
+
@property
|
108 |
+
def bos_token_id(self) -> Optional[int]:
|
109 |
+
return self.sp_model.bos_id()
|
110 |
+
|
111 |
+
@property
|
112 |
+
def eos_token_id(self) -> Optional[int]:
|
113 |
+
return self.sp_model.eos_id()
|
114 |
+
|
115 |
+
def get_vocab(self):
|
116 |
+
"""Returns vocab as a dict"""
|
117 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
118 |
+
vocab.update(self.added_tokens_encoder)
|
119 |
+
return vocab
|
120 |
+
|
121 |
+
def _tokenize(self, text):
|
122 |
+
"""Returns a tokenized string."""
|
123 |
+
|
124 |
+
splits = self.pre_tokenizer.pre_tokenize_str(text)
|
125 |
+
texts=[]
|
126 |
+
|
127 |
+
for split in splits:
|
128 |
+
texts.extend(self.sp_model.encode(split[0], out_type=str))
|
129 |
+
return texts
|
130 |
+
|
131 |
+
def _convert_token_to_id(self, token):
|
132 |
+
"""Converts a token (str) in an id using the vocab."""
|
133 |
+
|
134 |
+
return self.sp_model.piece_to_id(token)
|
135 |
+
|
136 |
+
def _convert_id_to_token(self, index):
|
137 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
138 |
+
token = self.sp_model.IdToPiece(index)
|
139 |
+
return token
|
140 |
+
|
141 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
142 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
143 |
+
return " " + decoded
|
144 |
+
else:
|
145 |
+
return decoded
|
146 |
+
|
147 |
+
def convert_tokens_to_string(self, tokens):
|
148 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
149 |
+
current_sub_tokens = []
|
150 |
+
out_string = ""
|
151 |
+
prev_is_special = False
|
152 |
+
for token in tokens:
|
153 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
154 |
+
if token in self.all_special_tokens:
|
155 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
156 |
+
prev_is_special = True
|
157 |
+
current_sub_tokens = []
|
158 |
+
else:
|
159 |
+
current_sub_tokens.append(token)
|
160 |
+
prev_is_special = False
|
161 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
162 |
+
|
163 |
+
return out_string
|
164 |
+
|
165 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
166 |
+
"""
|
167 |
+
Save the vocabulary and special tokens file to a directory.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
save_directory (`str`):
|
171 |
+
The directory in which to save the vocabulary.
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
`Tuple(str)`: Paths to the files saved.
|
175 |
+
"""
|
176 |
+
if not os.path.isdir(save_directory):
|
177 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
178 |
+
return
|
179 |
+
out_vocab_file = os.path.join(
|
180 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
181 |
+
)
|
182 |
+
|
183 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
184 |
+
copyfile(self.vocab_file, out_vocab_file)
|
185 |
+
elif not os.path.isfile(self.vocab_file):
|
186 |
+
with open(out_vocab_file, "wb") as fi:
|
187 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
188 |
+
fi.write(content_spiece_model)
|
189 |
+
|
190 |
+
return (out_vocab_file,)
|
191 |
+
|
192 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
193 |
+
if self.add_bos_token:
|
194 |
+
bos_token_ids = [self.bos_token_id]
|
195 |
+
else:
|
196 |
+
bos_token_ids = []
|
197 |
+
|
198 |
+
output = bos_token_ids + token_ids_0
|
199 |
+
|
200 |
+
if token_ids_1 is not None:
|
201 |
+
output = output + token_ids_1
|
202 |
+
|
203 |
+
if self.add_eos_token:
|
204 |
+
output = output + [self.eos_token_id]
|
205 |
+
|
206 |
+
return output
|
207 |
+
|
208 |
+
def get_special_tokens_mask(
|
209 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
210 |
+
) -> List[int]:
|
211 |
+
"""
|
212 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
213 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
token_ids_0 (`List[int]`):
|
217 |
+
List of IDs.
|
218 |
+
token_ids_1 (`List[int]`, *optional*):
|
219 |
+
Optional second list of IDs for sequence pairs.
|
220 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
221 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
225 |
+
"""
|
226 |
+
if already_has_special_tokens:
|
227 |
+
return super().get_special_tokens_mask(
|
228 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
229 |
+
)
|
230 |
+
|
231 |
+
eos_token_id = [1] if self.add_eos_token else []
|
232 |
+
if token_ids_1 is None:
|
233 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
234 |
+
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
235 |
+
|
236 |
+
|
237 |
+
def create_token_type_ids_from_sequences(
|
238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
239 |
+
) -> List[int]:
|
240 |
+
"""
|
241 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
242 |
+
sequence pair mask has the following format:
|
243 |
+
|
244 |
+
```
|
245 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
246 |
+
| first sequence | second sequence |
|
247 |
+
```
|
248 |
+
|
249 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
250 |
+
|
251 |
+
Note this is only used for back compatiblity, thus list of zero is returned.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
token_ids_0 (`List[int]`):
|
255 |
+
List of ids.
|
256 |
+
token_ids_1 (`List[int]`, *optional*):
|
257 |
+
Optional second list of IDs for sequence pairs.
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
`List[int]`: List of zeros.
|
261 |
+
"""
|
262 |
+
eos = [self.eos_token_id]
|
263 |
+
|
264 |
+
if token_ids_1 is None:
|
265 |
+
return len(token_ids_0 + eos) * [0]
|
266 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
267 |
+
|
268 |
+
|
269 |
+
@property
|
270 |
+
def default_chat_template(self):
|
271 |
+
return None
|
272 |
+
|
273 |
+
|
274 |
+
def decode(
|
275 |
+
self,
|
276 |
+
token_ids,
|
277 |
+
skip_special_tokens: bool = False,
|
278 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
279 |
+
spaces_between_special_tokens: bool = False,
|
280 |
+
**kwargs,
|
281 |
+
) -> str:
|
282 |
+
# default spaces_between_special_tokens should be false.
|
283 |
+
if spaces_between_special_tokens:
|
284 |
+
logger.warning_once('spaces_between_special_tokens is set. \
|
285 |
+
It has no effect for bos,eos,pad,unk when transformers<=4.38.')
|
286 |
+
return super().decode(
|
287 |
+
token_ids,
|
288 |
+
skip_special_tokens=skip_special_tokens,
|
289 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
290 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
291 |
+
**kwargs,
|
292 |
+
)
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76d43d618fc0c5a7c79dc4e72579f9f29bb803b36e4a4d709d1233626fd8fe2a
|
3 |
+
size 1535725
|
tokenizer_config.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<unk>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<pad>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"96499": {
|
37 |
+
"content": "<|start|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"96500": {
|
45 |
+
"content": "<|end|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"96501": {
|
53 |
+
"content": "<|message|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"96502": {
|
61 |
+
"content": "<|tool_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"96503": {
|
69 |
+
"content": "<|tool_excute|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"96504": {
|
77 |
+
"content": "<|tool_end|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"96505": {
|
85 |
+
"content": "<|pad|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"96506": {
|
93 |
+
"content": "<|endoftext|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
}
|
100 |
+
},
|
101 |
+
"additional_special_tokens": [
|
102 |
+
"<|start|>",
|
103 |
+
"<|end|>",
|
104 |
+
"<|message|>",
|
105 |
+
"<|tool_start|>",
|
106 |
+
"<|tool_excute|>",
|
107 |
+
"<|tool_end|>",
|
108 |
+
"<|pad|>",
|
109 |
+
"<|endoftext|>"
|
110 |
+
],
|
111 |
+
"auto_map": {
|
112 |
+
"AutoTokenizer": [
|
113 |
+
"tokenization_inflm.INFLMTokenizer",
|
114 |
+
null
|
115 |
+
]
|
116 |
+
},
|
117 |
+
"bos_token": "<s>",
|
118 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{% if not loop.first %}{{ '\\n' }}{% endif %}{{'<|start|>user\\n' + message['content'] + '<|end|>\\n' }}{% if (loop.last and add_generation_prompt) %}{{ '<|start|>assistant<|message|>' }}{% endif %}{% elif message['role'] == 'system' %}{{ '<|start|>system\\n' + message['content'] + '<|end|>' }}{% elif message['role'] == 'assistant' %}{{ '<|start|>assistant<|message|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}",
|
119 |
+
"clean_up_tokenization_spaces": false,
|
120 |
+
"eos_token": "</s>",
|
121 |
+
"model_max_length": 1000000000000000019884624838656,
|
122 |
+
"pad_token": "<pad>",
|
123 |
+
"return_tensors": true,
|
124 |
+
"spaces_between_special_tokens": false,
|
125 |
+
"tokenizer_class": "INFLMTokenizer",
|
126 |
+
"unk_token": "<unk>"
|
127 |
+
}
|