infinitejoy commited on
Commit
8e7f879
·
1 Parent(s): 9734651

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - sah
4
+ license: apache-2.0
5
+ tags:
6
+ - automatic-speech-recognition
7
+ - mozilla-foundation/common_voice_7_0
8
+ - generated_from_trainer
9
+ datasets:
10
+ - common_voice
11
+ model-index:
12
+ - name: wav2vec2-large-xls-r-300m-sakha
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # wav2vec2-large-xls-r-300m-sakha
20
+
21
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SAH dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4995
24
+ - Wer: 0.4421
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 0.0003
44
+ - train_batch_size: 32
45
+ - eval_batch_size: 1
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 500
50
+ - num_epochs: 100.0
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
56
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
57
+ | 1.8597 | 8.47 | 500 | 0.7731 | 0.7211 |
58
+ | 1.2508 | 16.95 | 1000 | 0.5368 | 0.5989 |
59
+ | 1.1066 | 25.42 | 1500 | 0.5034 | 0.5533 |
60
+ | 1.0064 | 33.9 | 2000 | 0.4686 | 0.5114 |
61
+ | 0.9324 | 42.37 | 2500 | 0.4927 | 0.5056 |
62
+ | 0.876 | 50.85 | 3000 | 0.4734 | 0.4795 |
63
+ | 0.8082 | 59.32 | 3500 | 0.4748 | 0.4799 |
64
+ | 0.7604 | 67.8 | 4000 | 0.4949 | 0.4691 |
65
+ | 0.7241 | 76.27 | 4500 | 0.5090 | 0.4627 |
66
+ | 0.6739 | 84.75 | 5000 | 0.4967 | 0.4452 |
67
+ | 0.6447 | 93.22 | 5500 | 0.5071 | 0.4437 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.16.0.dev0
73
+ - Pytorch 1.10.1+cu102
74
+ - Datasets 1.17.1.dev0
75
+ - Tokenizers 0.11.0