File size: 10,940 Bytes
7cf8a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb40a5
 
 
 
 
 
 
 
 
 
 
7cf8a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb40a5
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf8a28
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: Data_extraction
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Data_extraction

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4277
- Fsc Code: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22}
- Ame: {'precision': 0.391304347826087, 'recall': 0.42857142857142855, 'f1': 0.4090909090909091, 'number': 42}
- Ccount No: {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}
- Ign: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}
- Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
- Ther: {'precision': 0.5287356321839081, 'recall': 0.5348837209302325, 'f1': 0.5317919075144507, 'number': 86}
- Overall Precision: 0.6045
- Overall Recall: 0.6149
- Overall F1: 0.6097
- Overall Accuracy: 0.9431

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Fsc Code                                                   | Ame                                                                                                       | Ccount No                                                                                              | Ign                                                                                     | Mount                                                      | Ther                                                                                                     | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.1559        | 20.0  | 200  | 0.2349          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3448275862068966, 'recall': 0.47619047619047616, 'f1': 0.39999999999999997, 'number': 42} | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}                                             | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4329896907216495, 'recall': 0.4883720930232558, 'f1': 0.45901639344262296, 'number': 86} | 0.5155            | 0.5747         | 0.5435     | 0.9376           |
| 0.0138        | 40.0  | 400  | 0.2607          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3148148148148148, 'recall': 0.40476190476190477, 'f1': 0.3541666666666667, 'number': 42}  | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}                                             | {'precision': 1.0, 'recall': 0.8, 'f1': 0.888888888888889, 'number': 5}                 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.5, 'recall': 0.5465116279069767, 'f1': 0.5222222222222221, 'number': 86}                 | 0.5550            | 0.6092         | 0.5808     | 0.9372           |
| 0.0031        | 60.0  | 600  | 0.3808          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.2786885245901639, 'recall': 0.40476190476190477, 'f1': 0.33009708737864074, 'number': 42} | {'precision': 1.0, 'recall': 0.6666666666666666, 'f1': 0.8, 'number': 6}                               | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4077669902912621, 'recall': 0.4883720930232558, 'f1': 0.44444444444444436, 'number': 86} | 0.4928            | 0.5920         | 0.5379     | 0.9372           |
| 0.0031        | 80.0  | 800  | 0.3239          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.2807017543859649, 'recall': 0.38095238095238093, 'f1': 0.32323232323232326, 'number': 42} | {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 6}                | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.45, 'recall': 0.5232558139534884, 'f1': 0.48387096774193555, 'number': 86}               | 0.5248            | 0.6092         | 0.5638     | 0.9532           |
| 0.0007        | 100.0 | 1000 | 0.3718          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.375, 'recall': 0.42857142857142855, 'f1': 0.39999999999999997, 'number': 42}              | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 6} | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4891304347826087, 'recall': 0.5232558139534884, 'f1': 0.5056179775280899, 'number': 86}  | 0.5722            | 0.6149         | 0.5928     | 0.9467           |
| 0.0002        | 120.0 | 1200 | 0.4208          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.34, 'recall': 0.40476190476190477, 'f1': 0.36956521739130443, 'number': 42}               | {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 6}                                              | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4731182795698925, 'recall': 0.5116279069767442, 'f1': 0.4916201117318436, 'number': 86}  | 0.5474            | 0.5977         | 0.5714     | 0.9408           |
| 0.0003        | 140.0 | 1400 | 0.4155          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3333333333333333, 'recall': 0.40476190476190477, 'f1': 0.3655913978494623, 'number': 42}  | {'precision': 0.8, 'recall': 0.6666666666666666, 'f1': 0.7272727272727272, 'number': 6}                | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.46808510638297873, 'recall': 0.5116279069767442, 'f1': 0.4888888888888889, 'number': 86} | 0.5497            | 0.6034         | 0.5753     | 0.9397           |
| 0.0004        | 160.0 | 1600 | 0.4277          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.391304347826087, 'recall': 0.42857142857142855, 'f1': 0.4090909090909091, 'number': 42}   | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}                                             | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.5287356321839081, 'recall': 0.5348837209302325, 'f1': 0.5317919075144507, 'number': 86}  | 0.6045            | 0.6149         | 0.6097     | 0.9431           |
| 0.0001        | 180.0 | 1800 | 0.3870          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.27586206896551724, 'recall': 0.38095238095238093, 'f1': 0.32, 'number': 42}               | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}                                             | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.45, 'recall': 0.5232558139534884, 'f1': 0.48387096774193555, 'number': 86}               | 0.5149            | 0.5977         | 0.5532     | 0.9476           |
| 0.0001        | 200.0 | 2000 | 0.3956          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3617021276595745, 'recall': 0.40476190476190477, 'f1': 0.3820224719101123, 'number': 42}  | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}                                             | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.5056179775280899, 'recall': 0.5232558139534884, 'f1': 0.5142857142857142, 'number': 86}  | 0.5833            | 0.6034         | 0.5932     | 0.9526           |
| 0.0001        | 220.0 | 2200 | 0.4029          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.3469387755102041, 'recall': 0.40476190476190477, 'f1': 0.3736263736263736, 'number': 42}  | {'precision': 0.6, 'recall': 0.5, 'f1': 0.5454545454545454, 'number': 6}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.5, 'recall': 0.5348837209302325, 'f1': 0.5168539325842696, 'number': 86}                 | 0.5699            | 0.6092         | 0.5889     | 0.9508           |
| 0.0           | 240.0 | 2400 | 0.4031          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} | {'precision': 0.34, 'recall': 0.40476190476190477, 'f1': 0.36956521739130443, 'number': 42}               | {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}                                             | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.4891304347826087, 'recall': 0.5232558139534884, 'f1': 0.5056179775280899, 'number': 86}  | 0.5645            | 0.6034         | 0.5833     | 0.9499           |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1