alexandreteles commited on
Commit
349a781
1 Parent(s): e896a05

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -2
README.md CHANGED
@@ -16,6 +16,9 @@ co2_eq_emissions:
16
 
17
  - Problem type: Binary Classification
18
  - Model ID: 2489276793
 
 
 
19
  - CO2 Emissions (in grams): 4.4298
20
 
21
  ## Validation Metrics
@@ -29,6 +32,9 @@ co2_eq_emissions:
29
 
30
  ## Usage
31
 
 
 
 
32
  You can use cURL to access this model:
33
 
34
  ```
@@ -40,9 +46,9 @@ Or Python API:
40
  ```
41
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
42
 
43
- model = AutoModelForSequenceClassification.from_pretrained("alexandreteles/autotrain-told_br_binary_sm-2489276793", use_auth_token=True)
44
 
45
- tokenizer = AutoTokenizer.from_pretrained("alexandreteles/autotrain-told_br_binary_sm-2489276793", use_auth_token=True)
46
 
47
  inputs = tokenizer("I love AutoTrain", return_tensors="pt")
48
 
 
16
 
17
  - Problem type: Binary Classification
18
  - Model ID: 2489276793
19
+ - Base model: BertForSequenceClassification
20
+ - Parameters: 109M
21
+ - Model size: 416MB
22
  - CO2 Emissions (in grams): 4.4298
23
 
24
  ## Validation Metrics
 
32
 
33
  ## Usage
34
 
35
+ This model was trained on a random subset of the [told_br](https://huggingface.co/datasets/told-br) dataset (1/3 of the original size). Our main objective is to provide a small
36
+ model that can be used to classify Brazilian Portuguese tweets in a binary way ('toxic' or 'non toxic').
37
+
38
  You can use cURL to access this model:
39
 
40
  ```
 
46
  ```
47
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
48
 
49
+ model = AutoModelForSequenceClassification.from_pretrained("alexandreteles/told_br_binary_sm", use_auth_token=True)
50
 
51
+ tokenizer = AutoTokenizer.from_pretrained("alexandreteles/told_br_binary_sm", use_auth_token=True)
52
 
53
  inputs = tokenizer("I love AutoTrain", return_tensors="pt")
54