imvladikon commited on
Commit
e5a06fe
·
1 Parent(s): f31d770
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ - he
6
+ - robust-speech-event
7
+ model-index:
8
+ - name: wav2vec2-xls-r-300m-lm-hebrew
9
+ results: []
10
+ datasets:
11
+ - imvladikon/hebrew_speech_kan
12
+ - imvladikon/hebrew_speech_coursera
13
+ language:
14
+ - he
15
+ metrics:
16
+ - wer
17
+ ---
18
+
19
+ # wav2vec2-xls-r-300m-lm-hebrew
20
+
21
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset
22
+ with adding ngram models according to [Boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram)
23
+
24
+
25
+ ## Usage
26
+
27
+ check package: https://github.com/imvladikon/wav2vec2-hebrew
28
+
29
+ or use transformers pipeline:
30
+
31
+ ```python
32
+ import torch
33
+ from datasets import load_dataset
34
+ from transformers import AutoModelForCTC, AutoProcessor
35
+ import torchaudio.functional as F
36
+
37
+
38
+ model_id = "imvladikon/wav2vec2-xls-r-300m-lm-hebrew"
39
+
40
+ sample_iter = iter(load_dataset("google/fleurs", "he_il", split="test", streaming=True))
41
+
42
+ sample = next(sample_iter)
43
+ resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), sample["audio"]["sampling_rate"], 16_000).numpy()
44
+
45
+ model = AutoModelForCTC.from_pretrained(model_id)
46
+ processor = AutoProcessor.from_pretrained(model_id)
47
+
48
+ input_values = processor(resampled_audio, return_tensors="pt").input_values
49
+
50
+ with torch.no_grad():
51
+ logits = model(input_values).logits
52
+
53
+ transcription = processor.batch_decode(logits.numpy()).text
54
+ print(transcription)
55
+ ```
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 0.0003
71
+ - train_batch_size: 64
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 2
75
+ - total_train_batch_size: 128
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - lr_scheduler_warmup_steps: 500
79
+ - num_epochs: 100
80
+ - mixed_precision_training: Native AMP
81
+
82
+ ### Training results
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.16.0.dev0
88
+ - Pytorch 1.10.1+cu102
89
+ - Datasets 1.17.1.dev0
90
+ - Tokenizers 0.11.0