File size: 9,836 Bytes
f6079f4
88c729c
 
f6079f4
88c729c
 
 
f6079f4
 
5685ae1
f6079f4
 
 
 
 
 
5685ae1
f6079f4
5685ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa6809f
5685ae1
f6079f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5685ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6079f4
 
 
 
 
 
 
 
 
 
 
 
 
fa6809f
f6079f4
 
 
 
 
 
fa6809f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6079f4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
language:
- he
tags:
- automatic-speech-recognition
- robust-speech-event
- he
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-300m-hebrew
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m-hebrew

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the private datasets in 2 stages - firstly was fine-tuned on a small dataset with good samples and it achieves the following results on the evaluation set with the dataset:


| split  |size(gb) | n_samples | duration(hrs)|   |
|---|---|---|---|---|
|train|4.19| 20306  | 28  |   |
|dev  |1.05|  5076 |  7 |   |

- Loss: 0.5438
- Wer: 0.1773

Then the obtained model was fine-tuned on a large dataset with the small good dataset, with various samples from different sources, and with an unlabeled dataset that was weakly labeled using a previously trained model.
on a small dataset from previous step achieves 
- WER: 0.1697

on a whole dataset
- Loss: 0.4502
- WER: 0.2318

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters


#### First training

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP

Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log        | 3.15  | 1000  | 0.5203          | 0.4333 |
| 1.4284        | 6.31  | 2000  | 0.4816          | 0.3951 |
| 1.4284        | 9.46  | 3000  | 0.4315          | 0.3546 |
| 1.283         | 12.62 | 4000  | 0.4278          | 0.3404 |
| 1.283         | 15.77 | 5000  | 0.4090          | 0.3054 |
| 1.1777        | 18.93 | 6000  | 0.3893          | 0.3006 |
| 1.1777        | 22.08 | 7000  | 0.3968          | 0.2857 |
| 1.0994        | 25.24 | 8000  | 0.3892          | 0.2751 |
| 1.0994        | 28.39 | 9000  | 0.4061          | 0.2690 |
| 1.0323        | 31.54 | 10000 | 0.4114          | 0.2507 |
| 1.0323        | 34.7  | 11000 | 0.4021          | 0.2508 |
| 0.9623        | 37.85 | 12000 | 0.4032          | 0.2378 |
| 0.9623        | 41.01 | 13000 | 0.4148          | 0.2374 |
| 0.9077        | 44.16 | 14000 | 0.4350          | 0.2323 |
| 0.9077        | 47.32 | 15000 | 0.4515          | 0.2246 |
| 0.8573        | 50.47 | 16000 | 0.4474          | 0.2180 |
| 0.8573        | 53.63 | 17000 | 0.4649          | 0.2171 |
| 0.8083        | 56.78 | 18000 | 0.4455          | 0.2102 |
| 0.8083        | 59.94 | 19000 | 0.4587          | 0.2092 |
| 0.769         | 63.09 | 20000 | 0.4794          | 0.2012 |
| 0.769         | 66.25 | 21000 | 0.4845          | 0.2007 |
| 0.7308        | 69.4  | 22000 | 0.4937          | 0.2008 |
| 0.7308        | 72.55 | 23000 | 0.4920          | 0.1895 |
| 0.6927        | 75.71 | 24000 | 0.5179          | 0.1911 |
| 0.6927        | 78.86 | 25000 | 0.5202          | 0.1877 |
| 0.6622        | 82.02 | 26000 | 0.5266          | 0.1840 |
| 0.6622        | 85.17 | 27000 | 0.5351          | 0.1854 |
| 0.6315        | 88.33 | 28000 | 0.5373          | 0.1811 |
| 0.6315        | 91.48 | 29000 | 0.5331          | 0.1792 |
| 0.6075        | 94.64 | 30000 | 0.5390          | 0.1779 |
| 0.6075        | 97.79 | 31000 | 0.5459          | 0.1773 |

#### Second training

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log        | 0.7   | 1000  | 0.5371          | 0.3811 |
| 1.3606        | 1.41  | 2000  | 0.5247          | 0.3902 |
| 1.3606        | 2.12  | 3000  | 0.5126          | 0.3859 |
| 1.3671        | 2.82  | 4000  | 0.5062          | 0.3828 |
| 1.3671        | 3.53  | 5000  | 0.4979          | 0.3672 |
| 1.3421        | 4.23  | 6000  | 0.4906          | 0.3816 |
| 1.3421        | 4.94  | 7000  | 0.4784          | 0.3651 |
| 1.328         | 5.64  | 8000  | 0.4810          | 0.3669 |
| 1.328         | 6.35  | 9000  | 0.4747          | 0.3597 |
| 1.3109        | 7.05  | 10000 | 0.4813          | 0.3808 |
| 1.3109        | 7.76  | 11000 | 0.4631          | 0.3561 |
| 1.2873        | 8.46  | 12000 | 0.4603          | 0.3431 |
| 1.2873        | 9.17  | 13000 | 0.4579          | 0.3533 |
| 1.2661        | 9.87  | 14000 | 0.4471          | 0.3365 |
| 1.2661        | 10.58 | 15000 | 0.4584          | 0.3437 |
| 1.249         | 11.28 | 16000 | 0.4461          | 0.3454 |
| 1.249         | 11.99 | 17000 | 0.4482          | 0.3367 |
| 1.2322        | 12.69 | 18000 | 0.4464          | 0.3335 |
| 1.2322        | 13.4  | 19000 | 0.4427          | 0.3454 |
| 1.22          | 14.1  | 20000 | 0.4440          | 0.3395 |
| 1.22          | 14.81 | 21000 | 0.4459          | 0.3378 |
| 1.2044        | 15.51 | 22000 | 0.4406          | 0.3199 |
| 1.2044        | 16.22 | 23000 | 0.4398          | 0.3155 |
| 1.1913        | 16.92 | 24000 | 0.4237          | 0.3150 |
| 1.1913        | 17.63 | 25000 | 0.4287          | 0.3279 |
| 1.1705        | 18.34 | 26000 | 0.4253          | 0.3103 |
| 1.1705        | 19.04 | 27000 | 0.4234          | 0.3098 |
| 1.1564        | 19.75 | 28000 | 0.4174          | 0.3076 |
| 1.1564        | 20.45 | 29000 | 0.4260          | 0.3160 |
| 1.1461        | 21.16 | 30000 | 0.4235          | 0.3036 |
| 1.1461        | 21.86 | 31000 | 0.4309          | 0.3055 |
| 1.1285        | 22.57 | 32000 | 0.4264          | 0.3006 |
| 1.1285        | 23.27 | 33000 | 0.4201          | 0.2880 |
| 1.1135        | 23.98 | 34000 | 0.4131          | 0.2975 |
| 1.1135        | 24.68 | 35000 | 0.4202          | 0.2849 |
| 1.0968        | 25.39 | 36000 | 0.4105          | 0.2888 |
| 1.0968        | 26.09 | 37000 | 0.4210          | 0.2834 |
| 1.087         | 26.8  | 38000 | 0.4123          | 0.2843 |
| 1.087         | 27.5  | 39000 | 0.4216          | 0.2803 |
| 1.0707        | 28.21 | 40000 | 0.4161          | 0.2787 |
| 1.0707        | 28.91 | 41000 | 0.4186          | 0.2740 |
| 1.0575        | 29.62 | 42000 | 0.4118          | 0.2845 |
| 1.0575        | 30.32 | 43000 | 0.4243          | 0.2773 |
| 1.0474        | 31.03 | 44000 | 0.4221          | 0.2707 |
| 1.0474        | 31.73 | 45000 | 0.4138          | 0.2700 |
| 1.0333        | 32.44 | 46000 | 0.4102          | 0.2638 |
| 1.0333        | 33.15 | 47000 | 0.4162          | 0.2650 |
| 1.0191        | 33.85 | 48000 | 0.4155          | 0.2636 |
| 1.0191        | 34.56 | 49000 | 0.4129          | 0.2656 |
| 1.0087        | 35.26 | 50000 | 0.4157          | 0.2632 |
| 1.0087        | 35.97 | 51000 | 0.4090          | 0.2654 |
| 0.9901        | 36.67 | 52000 | 0.4183          | 0.2587 |
| 0.9901        | 37.38 | 53000 | 0.4251          | 0.2648 |
| 0.9795        | 38.08 | 54000 | 0.4229          | 0.2555 |
| 0.9795        | 38.79 | 55000 | 0.4176          | 0.2546 |
| 0.9644        | 39.49 | 56000 | 0.4223          | 0.2513 |
| 0.9644        | 40.2  | 57000 | 0.4244          | 0.2530 |
| 0.9534        | 40.9  | 58000 | 0.4175          | 0.2538 |
| 0.9534        | 41.61 | 59000 | 0.4213          | 0.2505 |
| 0.9397        | 42.31 | 60000 | 0.4275          | 0.2565 |
| 0.9397        | 43.02 | 61000 | 0.4315          | 0.2528 |
| 0.9269        | 43.72 | 62000 | 0.4316          | 0.2501 |
| 0.9269        | 44.43 | 63000 | 0.4247          | 0.2471 |
| 0.9175        | 45.13 | 64000 | 0.4376          | 0.2469 |
| 0.9175        | 45.84 | 65000 | 0.4335          | 0.2450 |
| 0.9026        | 46.54 | 66000 | 0.4336          | 0.2452 |
| 0.9026        | 47.25 | 67000 | 0.4400          | 0.2427 |
| 0.8929        | 47.95 | 68000 | 0.4382          | 0.2429 |
| 0.8929        | 48.66 | 69000 | 0.4361          | 0.2415 |
| 0.8786        | 49.37 | 70000 | 0.4413          | 0.2398 |
| 0.8786        | 50.07 | 71000 | 0.4392          | 0.2415 |
| 0.8714        | 50.78 | 72000 | 0.4345          | 0.2406 |
| 0.8714        | 51.48 | 73000 | 0.4475          | 0.2402 |
| 0.8589        | 52.19 | 74000 | 0.4473          | 0.2374 |
| 0.8589        | 52.89 | 75000 | 0.4457          | 0.2357 |
| 0.8493        | 53.6  | 76000 | 0.4462          | 0.2366 |
| 0.8493        | 54.3  | 77000 | 0.4494          | 0.2356 |
| 0.8395        | 55.01 | 78000 | 0.4472          | 0.2352 |
| 0.8395        | 55.71 | 79000 | 0.4490          | 0.2339 |
| 0.8295        | 56.42 | 80000 | 0.4489          | 0.2318 |
| 0.8295        | 57.12 | 81000 | 0.4469          | 0.2320 |
| 0.8225        | 57.83 | 82000 | 0.4478          | 0.2321 |
| 0.8225        | 58.53 | 83000 | 0.4525          | 0.2326 |
| 0.816         | 59.24 | 84000 | 0.4532          | 0.2316 |
| 0.816         | 59.94 | 85000 | 0.4502          | 0.2318 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0