File size: 4,425 Bytes
f1983d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from typing import Any, Dict, List, Optional

from transformers import T5Config, T5TokenizerFast


class EncT5Config(T5Config):
    model_type = "enc-t5"

    def __init__(self, **kwargs: Any) -> None:
        super().__init__(**kwargs)


class EncT5Tokenizer(T5TokenizerFast):

    def __init__(
        self,
        vocab_file,
        bos_token="<s>",
        eos_token="</s>",
        unk_token="<unk>",
        pad_token="<pad>",
        extra_ids=100,
        additional_special_tokens=None,
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> None:
        sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs

        super().__init__(
            vocab_file=vocab_file,
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            pad_token=pad_token,
            extra_ids=extra_ids,
            additional_special_tokens=additional_special_tokens,
            sp_model_kwargs=sp_model_kwargs,
            **kwargs,
        )

    def get_special_tokens_mask(
        self,
        token_ids_0: List[int],
        token_ids_1: Optional[List[int]] = None,
        already_has_special_tokens: bool = False,
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.
        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.
        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0,
                token_ids_1=token_ids_1,
                already_has_special_tokens=True,
            )

        # normal case: some special tokens
        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
        use of token type ids, therefore a list of zeros is returned.
        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
        Returns:
            `List[int]`: List of zeros.
        """
        bos = [self.bos_token_id]
        eos = [self.eos_token_id]

        if token_ids_1 is None:
            return len(bos + token_ids_0 + eos) * [0]
        return len(bos + token_ids_0 + eos + token_ids_1 + eos) * [0]

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A sequence has the following format:
        - single sequence: `<s> X </s>`
        - pair of sequences: `<s> A </s> B </s>`
        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        if token_ids_1 is None:
            return [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
        else:
            return (
                [self.bos_token_id]
                + token_ids_0
                + [self.eos_token_id]
                + token_ids_1
                + [self.eos_token_id]
            )