im2
commited on
Commit
•
061a822
1
Parent(s):
3f3b4ee
improved from online tutorial
Browse files- README.md +5 -3
- img_1.jpg +0 -0
- img_2.jpg +0 -0
- img_3.jpg +0 -0
- img_4.jpg +0 -0
- mnist_classifier.pth +0 -0
- torchnn.py +130 -0
README.md
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
1 |
+
Changes from previous author:
|
2 |
+
- Updated Architecture: Using AdaptiveAvgPool2d ensures that the fully connected layer receives a consistent input size, regardless of the input dimensions.
|
3 |
+
- Data Augmentation: Training with rotated and shifted images ensures the model becomes more robust to variations, improving generalization.
|
4 |
+
- Noise Reduction: Preprocessing the image by removing noise helps the model focus on the digit itself.
|
5 |
+
|
img_1.jpg
ADDED
img_2.jpg
ADDED
img_3.jpg
ADDED
img_4.jpg
ADDED
mnist_classifier.pth
ADDED
Binary file (229 kB). View file
|
|
torchnn.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.optim import Adam
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from torchvision import datasets, transforms
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from PIL import Image
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import cv2
|
10 |
+
|
11 |
+
# 1. Model Definition with Adaptive Pooling
|
12 |
+
class ImageClassifier(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
self.model = nn.Sequential(
|
16 |
+
nn.Conv2d(1, 32, (3,3)),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.Conv2d(32, 64, (3,3)),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.Conv2d(64, 64, (3,3)),
|
21 |
+
nn.ReLU(),
|
22 |
+
nn.AdaptiveAvgPool2d((1, 1)), # Pool to 1x1 to avoid hardcoding dimensions
|
23 |
+
nn.Flatten(),
|
24 |
+
nn.Linear(64, 10) # Final layer to output 10 classes (0-9)
|
25 |
+
)
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return self.model(x)
|
29 |
+
|
30 |
+
# 2. Data Augmentation for Training
|
31 |
+
train_transform = transforms.Compose([
|
32 |
+
transforms.RandomRotation(10), # Random rotation between -10 to 10 degrees
|
33 |
+
transforms.RandomAffine(0, translate=(0.1, 0.1)), # Random translation
|
34 |
+
transforms.ToTensor(),
|
35 |
+
transforms.Normalize((0.5,), (0.5,)) # Normalize to [-1, 1]
|
36 |
+
])
|
37 |
+
|
38 |
+
# Load MNIST dataset
|
39 |
+
train_dataset = datasets.MNIST(root="data", download=True, train=True, transform=train_transform)
|
40 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
41 |
+
|
42 |
+
# 3. Train the Model
|
43 |
+
def train_model(model, train_loader, num_epochs=10):
|
44 |
+
opt = Adam(model.parameters(), lr=1e-3)
|
45 |
+
loss_fn = nn.CrossEntropyLoss()
|
46 |
+
|
47 |
+
model.train()
|
48 |
+
for epoch in range(num_epochs):
|
49 |
+
total_loss = 0
|
50 |
+
for batch in train_loader:
|
51 |
+
X, y = batch
|
52 |
+
X, y = X.to('cpu'), y.to('cpu')
|
53 |
+
|
54 |
+
# Forward pass
|
55 |
+
yhat = model(X)
|
56 |
+
loss = loss_fn(yhat, y)
|
57 |
+
|
58 |
+
# Backpropagation
|
59 |
+
opt.zero_grad()
|
60 |
+
loss.backward()
|
61 |
+
opt.step()
|
62 |
+
|
63 |
+
total_loss += loss.item()
|
64 |
+
|
65 |
+
print(f"Epoch {epoch+1}, Loss: {total_loss / len(train_loader)}")
|
66 |
+
|
67 |
+
# Initialize model
|
68 |
+
clf = ImageClassifier().to('cpu')
|
69 |
+
|
70 |
+
# Train the model
|
71 |
+
train_model(clf, train_loader)
|
72 |
+
|
73 |
+
# Save the trained model
|
74 |
+
torch.save(clf.state_dict(), 'mnist_classifier.pth')
|
75 |
+
print("Model saved as 'mnist_classifier.pth'")
|
76 |
+
|
77 |
+
# 4. Noise Reduction and Preprocessing for Test Image
|
78 |
+
def preprocess_image(image_path):
|
79 |
+
# Load image using OpenCV
|
80 |
+
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
81 |
+
|
82 |
+
# Resize to 28x28 pixels to match MNIST
|
83 |
+
img = cv2.resize(img, (28, 28))
|
84 |
+
|
85 |
+
# Apply Gaussian blur to reduce noise
|
86 |
+
img_blur = cv2.GaussianBlur(img, (5, 5), 0)
|
87 |
+
|
88 |
+
# Convert to PIL Image for compatibility with torchvision transforms
|
89 |
+
img_pil = Image.fromarray(img_blur)
|
90 |
+
|
91 |
+
# Apply transformations: normalize same as MNIST
|
92 |
+
transform = transforms.Compose([
|
93 |
+
transforms.ToTensor(),
|
94 |
+
transforms.Normalize((0.5,), (0.5,))
|
95 |
+
])
|
96 |
+
|
97 |
+
img_tensor = transform(img_pil).unsqueeze(0) # Add batch dimension
|
98 |
+
return img_tensor
|
99 |
+
|
100 |
+
# 5. Test on Noisy Image
|
101 |
+
def test_model_on_image(model, image_path):
|
102 |
+
# Preprocess the noisy image
|
103 |
+
img_tensor = preprocess_image(image_path).to('cpu')
|
104 |
+
|
105 |
+
# Model in evaluation mode
|
106 |
+
model.eval()
|
107 |
+
with torch.no_grad():
|
108 |
+
output = model(img_tensor)
|
109 |
+
predicted = torch.argmax(output)
|
110 |
+
|
111 |
+
# Get softmax probabilities
|
112 |
+
probs = F.softmax(output, dim=1)
|
113 |
+
confidence = probs[0][predicted].item()
|
114 |
+
|
115 |
+
print(f"Predicted Label: {predicted.item()}, Confidence: {confidence}")
|
116 |
+
|
117 |
+
# Visualize the processed image
|
118 |
+
img_np = img_tensor.squeeze().cpu().numpy()
|
119 |
+
plt.imshow(img_np, cmap='gray')
|
120 |
+
plt.title(f"Predicted: {predicted.item()}, Confidence: {confidence}")
|
121 |
+
plt.show()
|
122 |
+
|
123 |
+
# Later: Load the saved model and test
|
124 |
+
clf = ImageClassifier().to('cpu')
|
125 |
+
clf.load_state_dict(torch.load('mnist_classifier.pth'))
|
126 |
+
print("Model loaded for inference.")
|
127 |
+
|
128 |
+
# Test the model on img_4.jpg (the noisy outlier)
|
129 |
+
test_image_path = 'img_4.jpg' # Path to the noisy image
|
130 |
+
test_model_on_image(clf, test_image_path)
|