|
import math |
|
import struct |
|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Any, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
@dataclass |
|
class ModelArgs: |
|
|
|
dim: int = 4096 |
|
n_layers: int = 32 |
|
n_heads: int = 32 |
|
n_kv_heads: Optional[int] = None |
|
vocab_size: int = 32000 |
|
hidden_dim: Optional[int] = None |
|
multiple_of: int = 256 |
|
norm_eps: float = 1e-5 |
|
max_seq_len: int = 2048 |
|
dropout: float = 0.0 |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): |
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
t = torch.arange(end, device=freqs.device) |
|
freqs = torch.outer(t, freqs).float() |
|
freqs_cos = torch.cos(freqs) |
|
freqs_sin = torch.sin(freqs) |
|
return freqs_cos, freqs_sin |
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return freqs_cis.view(shape) |
|
|
|
def apply_rotary_emb( |
|
xq: torch.Tensor, |
|
xk: torch.Tensor, |
|
freqs_cos: torch.Tensor, |
|
freqs_sin: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
|
|
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1) |
|
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1) |
|
|
|
|
|
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r) |
|
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r) |
|
|
|
|
|
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin |
|
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos |
|
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin |
|
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos |
|
|
|
|
|
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3) |
|
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3) |
|
|
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" |
|
bs, slen, n_kv_heads, head_dim = x.shape |
|
if n_rep == 1: |
|
return x |
|
return ( |
|
x[:, :, :, None, :] |
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim) |
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) |
|
) |
|
|
|
class Attention(nn.Module): |
|
def __init__(self, args: ModelArgs): |
|
super().__init__() |
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads |
|
assert args.n_heads % self.n_kv_heads == 0 |
|
model_parallel_size = 1 |
|
self.n_local_heads = args.n_heads // model_parallel_size |
|
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size |
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads |
|
self.head_dim = args.dim // args.n_heads |
|
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) |
|
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) |
|
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) |
|
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) |
|
self.attn_dropout = nn.Dropout(args.dropout) |
|
self.resid_dropout = nn.Dropout(args.dropout) |
|
self.dropout = args.dropout |
|
|
|
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') |
|
if not self.flash: |
|
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") |
|
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf")) |
|
mask = torch.triu(mask, diagonal=1) |
|
self.register_buffer("mask", mask) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
freqs_cos: torch.Tensor, |
|
freqs_sin: torch.Tensor, |
|
): |
|
bsz, seqlen, _ = x.shape |
|
|
|
|
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) |
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
|
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin) |
|
|
|
|
|
xk = repeat_kv(xk, self.n_rep) |
|
xv = repeat_kv(xv, self.n_rep) |
|
|
|
|
|
xq = xq.transpose(1, 2) |
|
xk = xk.transpose(1, 2) |
|
xv = xv.transpose(1, 2) |
|
|
|
|
|
if self.flash: |
|
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True) |
|
else: |
|
|
|
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
assert hasattr(self, 'mask') |
|
scores = scores + self.mask[:, :, :seqlen, :seqlen] |
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq) |
|
scores = self.attn_dropout(scores) |
|
output = torch.matmul(scores, xv) |
|
|
|
|
|
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) |
|
|
|
|
|
output = self.wo(output) |
|
output = self.resid_dropout(output) |
|
return output |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float): |
|
super().__init__() |
|
if hidden_dim is None: |
|
hidden_dim = 4 * dim |
|
hidden_dim = int(2 * hidden_dim / 3) |
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
self.w1 = nn.Linear(dim, hidden_dim, bias=False) |
|
self.w2 = nn.Linear(hidden_dim, dim, bias=False) |
|
self.w3 = nn.Linear(dim, hidden_dim, bias=False) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, layer_id: int, args: ModelArgs): |
|
super().__init__() |
|
self.n_heads = args.n_heads |
|
self.dim = args.dim |
|
self.head_dim = args.dim // args.n_heads |
|
self.attention = Attention(args) |
|
self.feed_forward = FeedForward( |
|
dim=args.dim, |
|
hidden_dim=args.hidden_dim, |
|
multiple_of=args.multiple_of, |
|
dropout=args.dropout, |
|
) |
|
self.layer_id = layer_id |
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
|
def forward(self, x, freqs_cos, freqs_sin): |
|
h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin) |
|
out = h + self.feed_forward.forward(self.ffn_norm(h)) |
|
return out |
|
|
|
|
|
class Transformer(nn.Module): |
|
last_loss: Optional[torch.Tensor] |
|
|
|
def __init__(self, params: ModelArgs): |
|
super().__init__() |
|
self.params = params |
|
self.vocab_size = params.vocab_size |
|
self.n_layers = params.n_layers |
|
|
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) |
|
self.dropout = nn.Dropout(params.dropout) |
|
self.layers = torch.nn.ModuleList() |
|
for layer_id in range(params.n_layers): |
|
self.layers.append(TransformerBlock(layer_id, params)) |
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps) |
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False) |
|
|
|
|
|
self.tok_embeddings.weight = self.output.weight |
|
|
|
|
|
freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len) |
|
self.register_buffer("freqs_cos", freqs_cos, persistent=False) |
|
self.register_buffer("freqs_sin", freqs_sin, persistent=False) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('w3.weight') or pn.endswith('wo.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers)) |
|
|
|
|
|
self.last_loss = None |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
_bsz, seqlen = tokens.shape |
|
h = self.tok_embeddings(tokens) |
|
h = self.dropout(h) |
|
freqs_cos = self.freqs_cos[:seqlen] |
|
freqs_sin = self.freqs_sin[:seqlen] |
|
|
|
for layer in self.layers: |
|
h = layer(h, freqs_cos, freqs_sin) |
|
h = self.norm(h) |
|
|
|
if targets is not None: |
|
|
|
logits = self.output(h) |
|
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
else: |
|
|
|
logits = self.output(h[:, [-1], :]) |
|
self.last_loss = None |
|
|
|
return logits |
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): |
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()} |
|
|
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} |
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] |
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] |
|
optim_groups = [ |
|
{'params': decay_params, 'weight_decay': weight_decay}, |
|
{'params': nodecay_params, 'weight_decay': 0.0} |
|
] |
|
num_decay_params = sum(p.numel() for p in decay_params) |
|
num_nodecay_params = sum(p.numel() for p in nodecay_params) |
|
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") |
|
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") |
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters |
|
use_fused = fused_available and device_type == 'cuda' |
|
extra_args = dict(fused=True) if use_fused else dict() |
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) |
|
print(f"using fused AdamW: {use_fused}") |
|
|
|
return optimizer |
|
|
|
def estimate_mfu(self, fwdbwd_per_iter, dt): |
|
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ |
|
|
|
|
|
N = sum(p.numel() for p in self.parameters()) |
|
cfg = self.params |
|
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len |
|
flops_per_token = 6*N + 12*L*H*Q*T |
|
flops_per_fwdbwd = flops_per_token * T |
|
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter |
|
|
|
flops_achieved = flops_per_iter * (1.0/dt) |
|
flops_promised = 312e12 |
|
mfu = flops_achieved / flops_promised |
|
return mfu |
|
|
|
@torch.inference_mode() |
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
""" |
|
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete |
|
the sequence max_new_tokens times, feeding the predictions back into the model each time. |
|
Most likely you'll want to make sure to be in model.eval() mode of operation for this. |
|
Also note this is a super inefficient version of sampling with no key/value cache. |
|
""" |
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:] |
|
|
|
logits = self(idx_cond) |
|
logits = logits[:, -1, :] |
|
if temperature == 0.0: |
|
|
|
_, idx_next = torch.topk(logits, k=1, dim=-1) |
|
else: |
|
|
|
logits = logits / temperature |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx |
|
|