imflash217
commited on
Commit
·
a706221
1
Parent(s):
5e163ae
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1902.19 +/- 153.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9f9324357635971a38dc5faa3cc81fd62017b4f53875717c11a85500d97cbbf
|
3 |
+
size 129258
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fec7ae44670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec7ae44700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec7ae44790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec7ae44820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fec7ae448b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fec7ae44940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec7ae449d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec7ae44a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fec7ae44af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec7ae44b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec7ae44c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec7ae44ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fec7ae3f690>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000.0,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675752708645665845,
|
68 |
+
"learning_rate": 0.001,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOwCtD4Sto8/gmt9PjMU5z9VShe/z9rHvgEUpz7i2B+/N+ppP37sJLz4vkS+Jn8rwF4pS78bp8Q/QHfVvmoxOD/2Uye+slycP4lVAz/rPZG/WZqzvhXlWj80VSS+qB0WQK7Fjr+Kx94+sY4AP5o9ib9eYXA9TyvHPDx8Jj9rhb8/2YXIP9sroL52y7m+Vl6QvsvMoD7zPLO/9YhIv9Pfoz+rABw/EG0rvw8fMD/UAuI7vgCMPxNtn7/ScCm/lIwpP7x+Xb/lpnA91lWqPsz7lr+uxY6/isfePtnj/r9bw24/SW/sv5hkAUBV2PC/BzKivxz2Ez20Sjo98UQjPha9pj6jIWk/GBNuO13tJr8fxwy9naS9vyqlejtxNgI/GjayPXTuqD/+lhQ876tFP8VpVTv9ll2/8G8OPUx1Y79If3U8MoNlP4rH3j6xjgA/W8NuP/1xWj4xWHK/smkTPkHvvD8v8SS9Hr+Av/MKrj45o0C/lPhpPzUDNbzE8wg/NvHmv6lCpL/JY4s/0wT+vhiwYL8gSMG+S+TBPj8URT/D1EO+V1v3vrOSzj/NmRa/dxUQQK7Fjr9QFhPAsY4AP5o9ib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABtsTa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4d1cPQAAAAAgJv2/AAAAAFmA17wAAAAASYHePwAAAAAceAG+AAAAAAyQ6T8AAAAApirEvQAAAAApgOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjdsGNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEhTab0AAAAAlGL1vwAAAAAeXDO9AAAAAGSk8D8AAAAAwBcDPgAAAAA65PY/AAAAAD+f4T0AAAAAqbn9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOepG7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcXhG9AAAAAEQp/r8AAAAAuifjvQAAAAAYVvo/AAAAAC11kjwAAAAAfHjyPwAAAAD+MUI9AAAAAH9K4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnYsM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFq0yvQAAAABFm+2/AAAAAO9buT0AAAAAYc/uPwAAAAARfaw9AAAAAFnn3j8AAAAAdbAFvQAAAAB9c+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJvP2M3qAz6MAWyUTegDjAF0lEdAsFJuvMbFTHV9lChoBkdAm6otlI3BHmgHTegDaAhHQLBWkLF4s3B1fZQoaAZHQJkYfgsK9f1oB03oA2gIR0CwVwlXvH94dX2UKGgGR0Ca3yhmGucMaAdN6ANoCEdAsFd0n4O+ZnV9lChoBkdAlvnFU+9rXWgHTegDaAhHQLBY3WiDdxh1fZQoaAZHQJ4EqRbKRuFoB03oA2gIR0CwXw3os7MgdX2UKGgGR0CbTbgJTl1baAdN6ANoCEdAsF+XXHzYmXV9lChoBkdAlsleKCQLeGgHTegDaAhHQLBgBFNtZV51fZQoaAZHQJ3UypBHCoFoB03oA2gIR0CwYXzfzjFRdX2UKGgGR0CZ2VcYZVGTaAdN6ANoCEdAsGW6pZOi4HV9lChoBkdAmio7IcR15mgHTegDaAhHQLBmPJw84gl1fZQoaAZHQHWrAdbPhQ5oB03oA2gIR0CwZqgGW2PUdX2UKGgGR0CdPSClabF1aAdN6ANoCEdAsGgivA44qHV9lChoBkdAmk3nJDE3sGgHTegDaAhHQLBuFvN/vv11fZQoaAZHQJt809TxXn1oB03oA2gIR0CwbumsV+I/dX2UKGgGR0CbMb3rUsnRaAdN6ANoCEdAsG9lIClrM3V9lChoBkdAme1MgyM1j2gHTegDaAhHQLBw3NNrTH91fZQoaAZHQJncZaKUFB9oB03oA2gIR0CwdQfACW/rdX2UKGgGR0CdLJ+3H7xeaAdN6ANoCEdAsHWJugpSaXV9lChoBkdAm9PiquKXOWgHTegDaAhHQLB18oA4n4R1fZQoaAZHQJrSAFt8/lhoB03oA2gIR0Cwd3CcbzbwdX2UKGgGR0CFqDt7a7EpaAdN6ANoCEdAsH0KucMEzXV9lChoBkdAkwg24NI9T2gHTegDaAhHQLB924Glhw51fZQoaAZHQJuT3Ot4iX9oB03oA2gIR0Cwfos5bQkYdX2UKGgGR0CK2WEytV7yaAdN6ANoCEdAsIA5JGvwE3V9lChoBkdAm+H56MR6GGgHTegDaAhHQLCEZV7hNud1fZQoaAZHQJttcLH+6y1oB03oA2gIR0CwhOTnq3VkdX2UKGgGR0CcWkcLSeAeaAdN6ANoCEdAsIVOT6i0wHV9lChoBkdAm+HAGwA2h2gHTegDaAhHQLCGzM85jpd1fZQoaAZHQJsRSpBHCoFoB03oA2gIR0Cwi+QpjMFEdX2UKGgGR0Ca2A1kUbkwaAdN6ANoCEdAsIy7BoEjgXV9lChoBkdAnOyMtGus92gHTegDaAhHQLCNbgoPTXt1fZQoaAZHQJVHskHD765oB03oA2gIR0Cwj29zfaYedX2UKGgGR0CRhqAFxGUfaAdN6ANoCEdAsJOMieNDMXV9lChoBkdAmGjDuF6Av2gHTegDaAhHQLCUBh7mdRR1fZQoaAZHQJmzXSUkfLdoB03oA2gIR0CwlGwqI7/5dX2UKGgGR0CdCuuNxVABaAdN6ANoCEdAsJXeKwY+CHV9lChoBkdAfd7PdEb5umgHTegDaAhHQLCanTz/ZNB1fZQoaAZHQJGtKQ+2VmloB03oA2gIR0Cwm1W+PBBSdX2UKGgGR0CZ46Xu3MINaAdN6ANoCEdAsJwBZQpF1HV9lChoBkdAjlnrA57w8WgHTegDaAhHQLCebtzjm0V1fZQoaAZHQJK2wkWykbhoB03oA2gIR0Cwoq08/2TQdX2UKGgGR0CIKw/47A+IaAdN6ANoCEdAsKMmWRigCnV9lChoBkdAkMHfQOWjXWgHTegDaAhHQLCjituk1uR1fZQoaAZHQJNwqMUAT7FoB03oA2gIR0CwpPF4HHFQdX2UKGgGR0CdpB8EFGG3aAdN6ANoCEdAsKkOglF+eHV9lChoBkdAmlReAEt/WmgHTegDaAhHQLCpx8vVVgh1fZQoaAZHQJdVcdKdxyZoB03oA2gIR0CwqmLeyiVTdX2UKGgGR0CV4C17pmmMaAdN6ANoCEdAsKzB03fhuXV9lChoBkdAktvWepXIVGgHTegDaAhHQLCxq/IbOu91fZQoaAZHQHKGsKw6hg5oB03oA2gIR0CwsixIFvAHdX2UKGgGR0CVHuHqNZNgaAdN6ANoCEdAsLKXBN21UnV9lChoBkdAlYNkWRA8jmgHTegDaAhHQLC0DQgs9Sx1fZQoaAZHQJzEUJ0GNaRoB03oA2gIR0CwuDfQOWjXdX2UKGgGR0Cajj+h4+r3aAdN6ANoCEdAsLjfB55Z83V9lChoBkdAk1oQazeGf2gHTegDaAhHQLC5gchkiEB1fZQoaAZHQIPFM1Q66rhoB03oA2gIR0Cwu99+LFXJdX2UKGgGR0CZriofSx7iaAdN6ANoCEdAsMEO2VmjCnV9lChoBkdAmPpZBLPD52gHTegDaAhHQLDBjN1QqI91fZQoaAZHQJKgE9r433poB03oA2gIR0CwwfRsl9jPdX2UKGgGR0CV9wcc2itaaAdN6ANoCEdAsMNqswL3K3V9lChoBkdAk5iBwZOzp2gHTegDaAhHQLDHfpXIU8F1fZQoaAZHQJhXWjk+5e9oB03oA2gIR0Cwx/i+xnnMdX2UKGgGR0CCTZmVZ9uxaAdN6ANoCEdAsMhqOktVaXV9lChoBkdAk2UnAymALGgHTegDaAhHQLDKoiCrcTJ1fZQoaAZHQJEH3pB5X2doB03oA2gIR0Cw0F77XQMQdX2UKGgGR0Bx4SCaqjrSaAdN6ANoCEdAsNDg3GXHBHV9lChoBkdAhAqxHww0wmgHTegDaAhHQLDRTNo8IRh1fZQoaAZHQHJxA8GLUCtoB03oA2gIR0Cw0tB+vyLAdX2UKGgGR0BudrBKtga4aAdN6ANoCEdAsNcOfWcz7HV9lChoBkdAcULfW+XZ5GgHTegDaAhHQLDXiaMrEtN1fZQoaAZHQI3kWGdqcmVoB03oA2gIR0Cw1/UwBYFJdX2UKGgGR0CbVLNyYG+saAdN6ANoCEdAsNon0TURWnV9lChoBkdAnF7+IMz/ImgHTegDaAhHQLDf8aqS5iF1fZQoaAZHQHFOth/iHZdoB03oA2gIR0Cw4G/siSq3dX2UKGgGR0Cci1dRiw0PaAdN6ANoCEdAsODUSuhbn3V9lChoBkdAmUI0py6tkmgHTegDaAhHQLDiQ3Sa3JB1fZQoaAZHQJ2sXv5P/JhoB03oA2gIR0Cw5kT8gpz+dX2UKGgGR0Ce68eD3/PxaAdN6ANoCEdAsOa+Kk2xZHV9lChoBkdAnGOb+cYqG2gHTegDaAhHQLDnJynUDuB1fZQoaAZHQJz1gBp5/spoB03oA2gIR0Cw6NQLiMo+dX2UKGgGR0CVhrNrCWNWaAdN6ANoCEdAsO71ix3V1HV9lChoBkdAmdi2912aD2gHTegDaAhHQLDvcfEGZ/l1fZQoaAZHQIr6HIMjNY9oB03oA2gIR0Cw79rKzRhMdX2UKGgGR0CdAr0EHMUzaAdN6ANoCEdAsPFKVs1sL3V9lChoBkdAnnEPmcOLBWgHTegDaAhHQLD1aETg2qF1fZQoaAZHQJR4udCmdiFoB03oA2gIR0Cw9eQf6oETdX2UKGgGR0Bt1GF6AvtdaAdN6ANoCEdAsPZOimEXcnV9lChoBkdAm0mRG+bmVGgHTegDaAhHQLD3xSG8Emp1fZQoaAZHQJ2pXBpHqeNoB03oA2gIR0Cw/gPoq0+ldX2UKGgGR0Ca5goJzDGcaAdN6ANoCEdAsP5+uMdcS3V9lChoBkdAm93J1eSjg2gHTegDaAhHQLD+5vw3HaN1fZQoaAZHQJkMVo24usdoB03oA2gIR0CxAFslw97odX2UKGgGR0Cb0TisXBP9aAdN6ANoCEdAsQRj3wkPc3V9lChoBkdAnF4lEy+HrWgHTegDaAhHQLEE4Jhvze51fZQoaAZHQJnfRzuF6AxoB03oA2gIR0CxBUsk+otMdX2UKGgGR0CcrzCemNzbaAdN6ANoCEdAsQa1xxT853V9lChoBkdAnu1kAggX/GgHTegDaAhHQLEMbr6ciGF1fZQoaAZHQJ08eJbdJrdoB03oA2gIR0CxDTm2LHdXdX2UKGgGR0CdVi7rcCYDaAdN6ANoCEdAsQ3eBAfMfXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ee9a2bd74e86ba09b1b86d4ead4a9818fb8a1875dd9b4e8eaf93ad34af860b1
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:635e895053cac494370e0343b7db5de7fe591badf3765f6419f238f7425ed014
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec7ae44670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec7ae44700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec7ae44790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec7ae44820>", "_build": "<function ActorCriticPolicy._build at 0x7fec7ae448b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fec7ae44940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec7ae449d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec7ae44a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fec7ae44af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec7ae44b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec7ae44c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec7ae44ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fec7ae3f690>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675752708645665845, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOwCtD4Sto8/gmt9PjMU5z9VShe/z9rHvgEUpz7i2B+/N+ppP37sJLz4vkS+Jn8rwF4pS78bp8Q/QHfVvmoxOD/2Uye+slycP4lVAz/rPZG/WZqzvhXlWj80VSS+qB0WQK7Fjr+Kx94+sY4AP5o9ib9eYXA9TyvHPDx8Jj9rhb8/2YXIP9sroL52y7m+Vl6QvsvMoD7zPLO/9YhIv9Pfoz+rABw/EG0rvw8fMD/UAuI7vgCMPxNtn7/ScCm/lIwpP7x+Xb/lpnA91lWqPsz7lr+uxY6/isfePtnj/r9bw24/SW/sv5hkAUBV2PC/BzKivxz2Ez20Sjo98UQjPha9pj6jIWk/GBNuO13tJr8fxwy9naS9vyqlejtxNgI/GjayPXTuqD/+lhQ876tFP8VpVTv9ll2/8G8OPUx1Y79If3U8MoNlP4rH3j6xjgA/W8NuP/1xWj4xWHK/smkTPkHvvD8v8SS9Hr+Av/MKrj45o0C/lPhpPzUDNbzE8wg/NvHmv6lCpL/JY4s/0wT+vhiwYL8gSMG+S+TBPj8URT/D1EO+V1v3vrOSzj/NmRa/dxUQQK7Fjr9QFhPAsY4AP5o9ib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABtsTa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4d1cPQAAAAAgJv2/AAAAAFmA17wAAAAASYHePwAAAAAceAG+AAAAAAyQ6T8AAAAApirEvQAAAAApgOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjdsGNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEhTab0AAAAAlGL1vwAAAAAeXDO9AAAAAGSk8D8AAAAAwBcDPgAAAAA65PY/AAAAAD+f4T0AAAAAqbn9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOepG7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcXhG9AAAAAEQp/r8AAAAAuifjvQAAAAAYVvo/AAAAAC11kjwAAAAAfHjyPwAAAAD+MUI9AAAAAH9K4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnYsM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFq0yvQAAAABFm+2/AAAAAO9buT0AAAAAYc/uPwAAAAARfaw9AAAAAFnn3j8AAAAAdbAFvQAAAAB9c+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJvP2M3qAz6MAWyUTegDjAF0lEdAsFJuvMbFTHV9lChoBkdAm6otlI3BHmgHTegDaAhHQLBWkLF4s3B1fZQoaAZHQJkYfgsK9f1oB03oA2gIR0CwVwlXvH94dX2UKGgGR0Ca3yhmGucMaAdN6ANoCEdAsFd0n4O+ZnV9lChoBkdAlvnFU+9rXWgHTegDaAhHQLBY3WiDdxh1fZQoaAZHQJ4EqRbKRuFoB03oA2gIR0CwXw3os7MgdX2UKGgGR0CbTbgJTl1baAdN6ANoCEdAsF+XXHzYmXV9lChoBkdAlsleKCQLeGgHTegDaAhHQLBgBFNtZV51fZQoaAZHQJ3UypBHCoFoB03oA2gIR0CwYXzfzjFRdX2UKGgGR0CZ2VcYZVGTaAdN6ANoCEdAsGW6pZOi4HV9lChoBkdAmio7IcR15mgHTegDaAhHQLBmPJw84gl1fZQoaAZHQHWrAdbPhQ5oB03oA2gIR0CwZqgGW2PUdX2UKGgGR0CdPSClabF1aAdN6ANoCEdAsGgivA44qHV9lChoBkdAmk3nJDE3sGgHTegDaAhHQLBuFvN/vv11fZQoaAZHQJt809TxXn1oB03oA2gIR0CwbumsV+I/dX2UKGgGR0CbMb3rUsnRaAdN6ANoCEdAsG9lIClrM3V9lChoBkdAme1MgyM1j2gHTegDaAhHQLBw3NNrTH91fZQoaAZHQJncZaKUFB9oB03oA2gIR0CwdQfACW/rdX2UKGgGR0CdLJ+3H7xeaAdN6ANoCEdAsHWJugpSaXV9lChoBkdAm9PiquKXOWgHTegDaAhHQLB18oA4n4R1fZQoaAZHQJrSAFt8/lhoB03oA2gIR0Cwd3CcbzbwdX2UKGgGR0CFqDt7a7EpaAdN6ANoCEdAsH0KucMEzXV9lChoBkdAkwg24NI9T2gHTegDaAhHQLB924Glhw51fZQoaAZHQJuT3Ot4iX9oB03oA2gIR0Cwfos5bQkYdX2UKGgGR0CK2WEytV7yaAdN6ANoCEdAsIA5JGvwE3V9lChoBkdAm+H56MR6GGgHTegDaAhHQLCEZV7hNud1fZQoaAZHQJttcLH+6y1oB03oA2gIR0CwhOTnq3VkdX2UKGgGR0CcWkcLSeAeaAdN6ANoCEdAsIVOT6i0wHV9lChoBkdAm+HAGwA2h2gHTegDaAhHQLCGzM85jpd1fZQoaAZHQJsRSpBHCoFoB03oA2gIR0Cwi+QpjMFEdX2UKGgGR0Ca2A1kUbkwaAdN6ANoCEdAsIy7BoEjgXV9lChoBkdAnOyMtGus92gHTegDaAhHQLCNbgoPTXt1fZQoaAZHQJVHskHD765oB03oA2gIR0Cwj29zfaYedX2UKGgGR0CRhqAFxGUfaAdN6ANoCEdAsJOMieNDMXV9lChoBkdAmGjDuF6Av2gHTegDaAhHQLCUBh7mdRR1fZQoaAZHQJmzXSUkfLdoB03oA2gIR0CwlGwqI7/5dX2UKGgGR0CdCuuNxVABaAdN6ANoCEdAsJXeKwY+CHV9lChoBkdAfd7PdEb5umgHTegDaAhHQLCanTz/ZNB1fZQoaAZHQJGtKQ+2VmloB03oA2gIR0Cwm1W+PBBSdX2UKGgGR0CZ46Xu3MINaAdN6ANoCEdAsJwBZQpF1HV9lChoBkdAjlnrA57w8WgHTegDaAhHQLCebtzjm0V1fZQoaAZHQJK2wkWykbhoB03oA2gIR0Cwoq08/2TQdX2UKGgGR0CIKw/47A+IaAdN6ANoCEdAsKMmWRigCnV9lChoBkdAkMHfQOWjXWgHTegDaAhHQLCjituk1uR1fZQoaAZHQJNwqMUAT7FoB03oA2gIR0CwpPF4HHFQdX2UKGgGR0CdpB8EFGG3aAdN6ANoCEdAsKkOglF+eHV9lChoBkdAmlReAEt/WmgHTegDaAhHQLCpx8vVVgh1fZQoaAZHQJdVcdKdxyZoB03oA2gIR0CwqmLeyiVTdX2UKGgGR0CV4C17pmmMaAdN6ANoCEdAsKzB03fhuXV9lChoBkdAktvWepXIVGgHTegDaAhHQLCxq/IbOu91fZQoaAZHQHKGsKw6hg5oB03oA2gIR0CwsixIFvAHdX2UKGgGR0CVHuHqNZNgaAdN6ANoCEdAsLKXBN21UnV9lChoBkdAlYNkWRA8jmgHTegDaAhHQLC0DQgs9Sx1fZQoaAZHQJzEUJ0GNaRoB03oA2gIR0CwuDfQOWjXdX2UKGgGR0Cajj+h4+r3aAdN6ANoCEdAsLjfB55Z83V9lChoBkdAk1oQazeGf2gHTegDaAhHQLC5gchkiEB1fZQoaAZHQIPFM1Q66rhoB03oA2gIR0Cwu99+LFXJdX2UKGgGR0CZriofSx7iaAdN6ANoCEdAsMEO2VmjCnV9lChoBkdAmPpZBLPD52gHTegDaAhHQLDBjN1QqI91fZQoaAZHQJKgE9r433poB03oA2gIR0CwwfRsl9jPdX2UKGgGR0CV9wcc2itaaAdN6ANoCEdAsMNqswL3K3V9lChoBkdAk5iBwZOzp2gHTegDaAhHQLDHfpXIU8F1fZQoaAZHQJhXWjk+5e9oB03oA2gIR0Cwx/i+xnnMdX2UKGgGR0CCTZmVZ9uxaAdN6ANoCEdAsMhqOktVaXV9lChoBkdAk2UnAymALGgHTegDaAhHQLDKoiCrcTJ1fZQoaAZHQJEH3pB5X2doB03oA2gIR0Cw0F77XQMQdX2UKGgGR0Bx4SCaqjrSaAdN6ANoCEdAsNDg3GXHBHV9lChoBkdAhAqxHww0wmgHTegDaAhHQLDRTNo8IRh1fZQoaAZHQHJxA8GLUCtoB03oA2gIR0Cw0tB+vyLAdX2UKGgGR0BudrBKtga4aAdN6ANoCEdAsNcOfWcz7HV9lChoBkdAcULfW+XZ5GgHTegDaAhHQLDXiaMrEtN1fZQoaAZHQI3kWGdqcmVoB03oA2gIR0Cw1/UwBYFJdX2UKGgGR0CbVLNyYG+saAdN6ANoCEdAsNon0TURWnV9lChoBkdAnF7+IMz/ImgHTegDaAhHQLDf8aqS5iF1fZQoaAZHQHFOth/iHZdoB03oA2gIR0Cw4G/siSq3dX2UKGgGR0Cci1dRiw0PaAdN6ANoCEdAsODUSuhbn3V9lChoBkdAmUI0py6tkmgHTegDaAhHQLDiQ3Sa3JB1fZQoaAZHQJ2sXv5P/JhoB03oA2gIR0Cw5kT8gpz+dX2UKGgGR0Ce68eD3/PxaAdN6ANoCEdAsOa+Kk2xZHV9lChoBkdAnGOb+cYqG2gHTegDaAhHQLDnJynUDuB1fZQoaAZHQJz1gBp5/spoB03oA2gIR0Cw6NQLiMo+dX2UKGgGR0CVhrNrCWNWaAdN6ANoCEdAsO71ix3V1HV9lChoBkdAmdi2912aD2gHTegDaAhHQLDvcfEGZ/l1fZQoaAZHQIr6HIMjNY9oB03oA2gIR0Cw79rKzRhMdX2UKGgGR0CdAr0EHMUzaAdN6ANoCEdAsPFKVs1sL3V9lChoBkdAnnEPmcOLBWgHTegDaAhHQLD1aETg2qF1fZQoaAZHQJR4udCmdiFoB03oA2gIR0Cw9eQf6oETdX2UKGgGR0Bt1GF6AvtdaAdN6ANoCEdAsPZOimEXcnV9lChoBkdAm0mRG+bmVGgHTegDaAhHQLD3xSG8Emp1fZQoaAZHQJ2pXBpHqeNoB03oA2gIR0Cw/gPoq0+ldX2UKGgGR0Ca5goJzDGcaAdN6ANoCEdAsP5+uMdcS3V9lChoBkdAm93J1eSjg2gHTegDaAhHQLD+5vw3HaN1fZQoaAZHQJkMVo24usdoB03oA2gIR0CxAFslw97odX2UKGgGR0Cb0TisXBP9aAdN6ANoCEdAsQRj3wkPc3V9lChoBkdAnF4lEy+HrWgHTegDaAhHQLEE4Jhvze51fZQoaAZHQJnfRzuF6AxoB03oA2gIR0CxBUsk+otMdX2UKGgGR0CcrzCemNzbaAdN6ANoCEdAsQa1xxT853V9lChoBkdAnu1kAggX/GgHTegDaAhHQLEMbr6ciGF1fZQoaAZHQJ08eJbdJrdoB03oA2gIR0CxDTm2LHdXdX2UKGgGR0CdVi7rcCYDaAdN6ANoCEdAsQ3eBAfMfXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2a2890832b6b32476158a088b5627e611c7995bbf1c5eb5f0807e7f19ac05c3
|
3 |
+
size 1085355
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1902.1885058951098, "std_reward": 153.2734383988303, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T07:58:51.383968"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f296890f68048cdda875afe6562bd1e195b800140f8d341c4d4190faa2e84f84
|
3 |
+
size 2129
|