imflash217 commited on
Commit
a706221
·
1 Parent(s): 5e163ae

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1902.19 +/- 153.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9f9324357635971a38dc5faa3cc81fd62017b4f53875717c11a85500d97cbbf
3
+ size 129258
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec7ae44670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec7ae44700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec7ae44790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec7ae44820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fec7ae448b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fec7ae44940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec7ae449d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec7ae44a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fec7ae44af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec7ae44b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec7ae44c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec7ae44ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fec7ae3f690>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000.0,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675752708645665845,
68
+ "learning_rate": 0.001,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOwCtD4Sto8/gmt9PjMU5z9VShe/z9rHvgEUpz7i2B+/N+ppP37sJLz4vkS+Jn8rwF4pS78bp8Q/QHfVvmoxOD/2Uye+slycP4lVAz/rPZG/WZqzvhXlWj80VSS+qB0WQK7Fjr+Kx94+sY4AP5o9ib9eYXA9TyvHPDx8Jj9rhb8/2YXIP9sroL52y7m+Vl6QvsvMoD7zPLO/9YhIv9Pfoz+rABw/EG0rvw8fMD/UAuI7vgCMPxNtn7/ScCm/lIwpP7x+Xb/lpnA91lWqPsz7lr+uxY6/isfePtnj/r9bw24/SW/sv5hkAUBV2PC/BzKivxz2Ez20Sjo98UQjPha9pj6jIWk/GBNuO13tJr8fxwy9naS9vyqlejtxNgI/GjayPXTuqD/+lhQ876tFP8VpVTv9ll2/8G8OPUx1Y79If3U8MoNlP4rH3j6xjgA/W8NuP/1xWj4xWHK/smkTPkHvvD8v8SS9Hr+Av/MKrj45o0C/lPhpPzUDNbzE8wg/NvHmv6lCpL/JY4s/0wT+vhiwYL8gSMG+S+TBPj8URT/D1EO+V1v3vrOSzj/NmRa/dxUQQK7Fjr9QFhPAsY4AP5o9ib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABtsTa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4d1cPQAAAAAgJv2/AAAAAFmA17wAAAAASYHePwAAAAAceAG+AAAAAAyQ6T8AAAAApirEvQAAAAApgOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjdsGNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEhTab0AAAAAlGL1vwAAAAAeXDO9AAAAAGSk8D8AAAAAwBcDPgAAAAA65PY/AAAAAD+f4T0AAAAAqbn9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOepG7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcXhG9AAAAAEQp/r8AAAAAuifjvQAAAAAYVvo/AAAAAC11kjwAAAAAfHjyPwAAAAD+MUI9AAAAAH9K4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnYsM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFq0yvQAAAABFm+2/AAAAAO9buT0AAAAAYc/uPwAAAAARfaw9AAAAAFnn3j8AAAAAdbAFvQAAAAB9c+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJvP2M3qAz6MAWyUTegDjAF0lEdAsFJuvMbFTHV9lChoBkdAm6otlI3BHmgHTegDaAhHQLBWkLF4s3B1fZQoaAZHQJkYfgsK9f1oB03oA2gIR0CwVwlXvH94dX2UKGgGR0Ca3yhmGucMaAdN6ANoCEdAsFd0n4O+ZnV9lChoBkdAlvnFU+9rXWgHTegDaAhHQLBY3WiDdxh1fZQoaAZHQJ4EqRbKRuFoB03oA2gIR0CwXw3os7MgdX2UKGgGR0CbTbgJTl1baAdN6ANoCEdAsF+XXHzYmXV9lChoBkdAlsleKCQLeGgHTegDaAhHQLBgBFNtZV51fZQoaAZHQJ3UypBHCoFoB03oA2gIR0CwYXzfzjFRdX2UKGgGR0CZ2VcYZVGTaAdN6ANoCEdAsGW6pZOi4HV9lChoBkdAmio7IcR15mgHTegDaAhHQLBmPJw84gl1fZQoaAZHQHWrAdbPhQ5oB03oA2gIR0CwZqgGW2PUdX2UKGgGR0CdPSClabF1aAdN6ANoCEdAsGgivA44qHV9lChoBkdAmk3nJDE3sGgHTegDaAhHQLBuFvN/vv11fZQoaAZHQJt809TxXn1oB03oA2gIR0CwbumsV+I/dX2UKGgGR0CbMb3rUsnRaAdN6ANoCEdAsG9lIClrM3V9lChoBkdAme1MgyM1j2gHTegDaAhHQLBw3NNrTH91fZQoaAZHQJncZaKUFB9oB03oA2gIR0CwdQfACW/rdX2UKGgGR0CdLJ+3H7xeaAdN6ANoCEdAsHWJugpSaXV9lChoBkdAm9PiquKXOWgHTegDaAhHQLB18oA4n4R1fZQoaAZHQJrSAFt8/lhoB03oA2gIR0Cwd3CcbzbwdX2UKGgGR0CFqDt7a7EpaAdN6ANoCEdAsH0KucMEzXV9lChoBkdAkwg24NI9T2gHTegDaAhHQLB924Glhw51fZQoaAZHQJuT3Ot4iX9oB03oA2gIR0Cwfos5bQkYdX2UKGgGR0CK2WEytV7yaAdN6ANoCEdAsIA5JGvwE3V9lChoBkdAm+H56MR6GGgHTegDaAhHQLCEZV7hNud1fZQoaAZHQJttcLH+6y1oB03oA2gIR0CwhOTnq3VkdX2UKGgGR0CcWkcLSeAeaAdN6ANoCEdAsIVOT6i0wHV9lChoBkdAm+HAGwA2h2gHTegDaAhHQLCGzM85jpd1fZQoaAZHQJsRSpBHCoFoB03oA2gIR0Cwi+QpjMFEdX2UKGgGR0Ca2A1kUbkwaAdN6ANoCEdAsIy7BoEjgXV9lChoBkdAnOyMtGus92gHTegDaAhHQLCNbgoPTXt1fZQoaAZHQJVHskHD765oB03oA2gIR0Cwj29zfaYedX2UKGgGR0CRhqAFxGUfaAdN6ANoCEdAsJOMieNDMXV9lChoBkdAmGjDuF6Av2gHTegDaAhHQLCUBh7mdRR1fZQoaAZHQJmzXSUkfLdoB03oA2gIR0CwlGwqI7/5dX2UKGgGR0CdCuuNxVABaAdN6ANoCEdAsJXeKwY+CHV9lChoBkdAfd7PdEb5umgHTegDaAhHQLCanTz/ZNB1fZQoaAZHQJGtKQ+2VmloB03oA2gIR0Cwm1W+PBBSdX2UKGgGR0CZ46Xu3MINaAdN6ANoCEdAsJwBZQpF1HV9lChoBkdAjlnrA57w8WgHTegDaAhHQLCebtzjm0V1fZQoaAZHQJK2wkWykbhoB03oA2gIR0Cwoq08/2TQdX2UKGgGR0CIKw/47A+IaAdN6ANoCEdAsKMmWRigCnV9lChoBkdAkMHfQOWjXWgHTegDaAhHQLCjituk1uR1fZQoaAZHQJNwqMUAT7FoB03oA2gIR0CwpPF4HHFQdX2UKGgGR0CdpB8EFGG3aAdN6ANoCEdAsKkOglF+eHV9lChoBkdAmlReAEt/WmgHTegDaAhHQLCpx8vVVgh1fZQoaAZHQJdVcdKdxyZoB03oA2gIR0CwqmLeyiVTdX2UKGgGR0CV4C17pmmMaAdN6ANoCEdAsKzB03fhuXV9lChoBkdAktvWepXIVGgHTegDaAhHQLCxq/IbOu91fZQoaAZHQHKGsKw6hg5oB03oA2gIR0CwsixIFvAHdX2UKGgGR0CVHuHqNZNgaAdN6ANoCEdAsLKXBN21UnV9lChoBkdAlYNkWRA8jmgHTegDaAhHQLC0DQgs9Sx1fZQoaAZHQJzEUJ0GNaRoB03oA2gIR0CwuDfQOWjXdX2UKGgGR0Cajj+h4+r3aAdN6ANoCEdAsLjfB55Z83V9lChoBkdAk1oQazeGf2gHTegDaAhHQLC5gchkiEB1fZQoaAZHQIPFM1Q66rhoB03oA2gIR0Cwu99+LFXJdX2UKGgGR0CZriofSx7iaAdN6ANoCEdAsMEO2VmjCnV9lChoBkdAmPpZBLPD52gHTegDaAhHQLDBjN1QqI91fZQoaAZHQJKgE9r433poB03oA2gIR0CwwfRsl9jPdX2UKGgGR0CV9wcc2itaaAdN6ANoCEdAsMNqswL3K3V9lChoBkdAk5iBwZOzp2gHTegDaAhHQLDHfpXIU8F1fZQoaAZHQJhXWjk+5e9oB03oA2gIR0Cwx/i+xnnMdX2UKGgGR0CCTZmVZ9uxaAdN6ANoCEdAsMhqOktVaXV9lChoBkdAk2UnAymALGgHTegDaAhHQLDKoiCrcTJ1fZQoaAZHQJEH3pB5X2doB03oA2gIR0Cw0F77XQMQdX2UKGgGR0Bx4SCaqjrSaAdN6ANoCEdAsNDg3GXHBHV9lChoBkdAhAqxHww0wmgHTegDaAhHQLDRTNo8IRh1fZQoaAZHQHJxA8GLUCtoB03oA2gIR0Cw0tB+vyLAdX2UKGgGR0BudrBKtga4aAdN6ANoCEdAsNcOfWcz7HV9lChoBkdAcULfW+XZ5GgHTegDaAhHQLDXiaMrEtN1fZQoaAZHQI3kWGdqcmVoB03oA2gIR0Cw1/UwBYFJdX2UKGgGR0CbVLNyYG+saAdN6ANoCEdAsNon0TURWnV9lChoBkdAnF7+IMz/ImgHTegDaAhHQLDf8aqS5iF1fZQoaAZHQHFOth/iHZdoB03oA2gIR0Cw4G/siSq3dX2UKGgGR0Cci1dRiw0PaAdN6ANoCEdAsODUSuhbn3V9lChoBkdAmUI0py6tkmgHTegDaAhHQLDiQ3Sa3JB1fZQoaAZHQJ2sXv5P/JhoB03oA2gIR0Cw5kT8gpz+dX2UKGgGR0Ce68eD3/PxaAdN6ANoCEdAsOa+Kk2xZHV9lChoBkdAnGOb+cYqG2gHTegDaAhHQLDnJynUDuB1fZQoaAZHQJz1gBp5/spoB03oA2gIR0Cw6NQLiMo+dX2UKGgGR0CVhrNrCWNWaAdN6ANoCEdAsO71ix3V1HV9lChoBkdAmdi2912aD2gHTegDaAhHQLDvcfEGZ/l1fZQoaAZHQIr6HIMjNY9oB03oA2gIR0Cw79rKzRhMdX2UKGgGR0CdAr0EHMUzaAdN6ANoCEdAsPFKVs1sL3V9lChoBkdAnnEPmcOLBWgHTegDaAhHQLD1aETg2qF1fZQoaAZHQJR4udCmdiFoB03oA2gIR0Cw9eQf6oETdX2UKGgGR0Bt1GF6AvtdaAdN6ANoCEdAsPZOimEXcnV9lChoBkdAm0mRG+bmVGgHTegDaAhHQLD3xSG8Emp1fZQoaAZHQJ2pXBpHqeNoB03oA2gIR0Cw/gPoq0+ldX2UKGgGR0Ca5goJzDGcaAdN6ANoCEdAsP5+uMdcS3V9lChoBkdAm93J1eSjg2gHTegDaAhHQLD+5vw3HaN1fZQoaAZHQJkMVo24usdoB03oA2gIR0CxAFslw97odX2UKGgGR0Cb0TisXBP9aAdN6ANoCEdAsQRj3wkPc3V9lChoBkdAnF4lEy+HrWgHTegDaAhHQLEE4Jhvze51fZQoaAZHQJnfRzuF6AxoB03oA2gIR0CxBUsk+otMdX2UKGgGR0CcrzCemNzbaAdN6ANoCEdAsQa1xxT853V9lChoBkdAnu1kAggX/GgHTegDaAhHQLEMbr6ciGF1fZQoaAZHQJ08eJbdJrdoB03oA2gIR0CxDTm2LHdXdX2UKGgGR0CdVi7rcCYDaAdN6ANoCEdAsQ3eBAfMfXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ee9a2bd74e86ba09b1b86d4ead4a9818fb8a1875dd9b4e8eaf93ad34af860b1
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:635e895053cac494370e0343b7db5de7fe591badf3765f6419f238f7425ed014
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec7ae44670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec7ae44700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec7ae44790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec7ae44820>", "_build": "<function ActorCriticPolicy._build at 0x7fec7ae448b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fec7ae44940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fec7ae449d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec7ae44a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fec7ae44af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec7ae44b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec7ae44c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec7ae44ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fec7ae3f690>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675752708645665845, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOwCtD4Sto8/gmt9PjMU5z9VShe/z9rHvgEUpz7i2B+/N+ppP37sJLz4vkS+Jn8rwF4pS78bp8Q/QHfVvmoxOD/2Uye+slycP4lVAz/rPZG/WZqzvhXlWj80VSS+qB0WQK7Fjr+Kx94+sY4AP5o9ib9eYXA9TyvHPDx8Jj9rhb8/2YXIP9sroL52y7m+Vl6QvsvMoD7zPLO/9YhIv9Pfoz+rABw/EG0rvw8fMD/UAuI7vgCMPxNtn7/ScCm/lIwpP7x+Xb/lpnA91lWqPsz7lr+uxY6/isfePtnj/r9bw24/SW/sv5hkAUBV2PC/BzKivxz2Ez20Sjo98UQjPha9pj6jIWk/GBNuO13tJr8fxwy9naS9vyqlejtxNgI/GjayPXTuqD/+lhQ876tFP8VpVTv9ll2/8G8OPUx1Y79If3U8MoNlP4rH3j6xjgA/W8NuP/1xWj4xWHK/smkTPkHvvD8v8SS9Hr+Av/MKrj45o0C/lPhpPzUDNbzE8wg/NvHmv6lCpL/JY4s/0wT+vhiwYL8gSMG+S+TBPj8URT/D1EO+V1v3vrOSzj/NmRa/dxUQQK7Fjr9QFhPAsY4AP5o9ib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABtsTa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4d1cPQAAAAAgJv2/AAAAAFmA17wAAAAASYHePwAAAAAceAG+AAAAAAyQ6T8AAAAApirEvQAAAAApgOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjdsGNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEhTab0AAAAAlGL1vwAAAAAeXDO9AAAAAGSk8D8AAAAAwBcDPgAAAAA65PY/AAAAAD+f4T0AAAAAqbn9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOepG7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcXhG9AAAAAEQp/r8AAAAAuifjvQAAAAAYVvo/AAAAAC11kjwAAAAAfHjyPwAAAAD+MUI9AAAAAH9K4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnYsM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFq0yvQAAAABFm+2/AAAAAO9buT0AAAAAYc/uPwAAAAARfaw9AAAAAFnn3j8AAAAAdbAFvQAAAAB9c+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJvP2M3qAz6MAWyUTegDjAF0lEdAsFJuvMbFTHV9lChoBkdAm6otlI3BHmgHTegDaAhHQLBWkLF4s3B1fZQoaAZHQJkYfgsK9f1oB03oA2gIR0CwVwlXvH94dX2UKGgGR0Ca3yhmGucMaAdN6ANoCEdAsFd0n4O+ZnV9lChoBkdAlvnFU+9rXWgHTegDaAhHQLBY3WiDdxh1fZQoaAZHQJ4EqRbKRuFoB03oA2gIR0CwXw3os7MgdX2UKGgGR0CbTbgJTl1baAdN6ANoCEdAsF+XXHzYmXV9lChoBkdAlsleKCQLeGgHTegDaAhHQLBgBFNtZV51fZQoaAZHQJ3UypBHCoFoB03oA2gIR0CwYXzfzjFRdX2UKGgGR0CZ2VcYZVGTaAdN6ANoCEdAsGW6pZOi4HV9lChoBkdAmio7IcR15mgHTegDaAhHQLBmPJw84gl1fZQoaAZHQHWrAdbPhQ5oB03oA2gIR0CwZqgGW2PUdX2UKGgGR0CdPSClabF1aAdN6ANoCEdAsGgivA44qHV9lChoBkdAmk3nJDE3sGgHTegDaAhHQLBuFvN/vv11fZQoaAZHQJt809TxXn1oB03oA2gIR0CwbumsV+I/dX2UKGgGR0CbMb3rUsnRaAdN6ANoCEdAsG9lIClrM3V9lChoBkdAme1MgyM1j2gHTegDaAhHQLBw3NNrTH91fZQoaAZHQJncZaKUFB9oB03oA2gIR0CwdQfACW/rdX2UKGgGR0CdLJ+3H7xeaAdN6ANoCEdAsHWJugpSaXV9lChoBkdAm9PiquKXOWgHTegDaAhHQLB18oA4n4R1fZQoaAZHQJrSAFt8/lhoB03oA2gIR0Cwd3CcbzbwdX2UKGgGR0CFqDt7a7EpaAdN6ANoCEdAsH0KucMEzXV9lChoBkdAkwg24NI9T2gHTegDaAhHQLB924Glhw51fZQoaAZHQJuT3Ot4iX9oB03oA2gIR0Cwfos5bQkYdX2UKGgGR0CK2WEytV7yaAdN6ANoCEdAsIA5JGvwE3V9lChoBkdAm+H56MR6GGgHTegDaAhHQLCEZV7hNud1fZQoaAZHQJttcLH+6y1oB03oA2gIR0CwhOTnq3VkdX2UKGgGR0CcWkcLSeAeaAdN6ANoCEdAsIVOT6i0wHV9lChoBkdAm+HAGwA2h2gHTegDaAhHQLCGzM85jpd1fZQoaAZHQJsRSpBHCoFoB03oA2gIR0Cwi+QpjMFEdX2UKGgGR0Ca2A1kUbkwaAdN6ANoCEdAsIy7BoEjgXV9lChoBkdAnOyMtGus92gHTegDaAhHQLCNbgoPTXt1fZQoaAZHQJVHskHD765oB03oA2gIR0Cwj29zfaYedX2UKGgGR0CRhqAFxGUfaAdN6ANoCEdAsJOMieNDMXV9lChoBkdAmGjDuF6Av2gHTegDaAhHQLCUBh7mdRR1fZQoaAZHQJmzXSUkfLdoB03oA2gIR0CwlGwqI7/5dX2UKGgGR0CdCuuNxVABaAdN6ANoCEdAsJXeKwY+CHV9lChoBkdAfd7PdEb5umgHTegDaAhHQLCanTz/ZNB1fZQoaAZHQJGtKQ+2VmloB03oA2gIR0Cwm1W+PBBSdX2UKGgGR0CZ46Xu3MINaAdN6ANoCEdAsJwBZQpF1HV9lChoBkdAjlnrA57w8WgHTegDaAhHQLCebtzjm0V1fZQoaAZHQJK2wkWykbhoB03oA2gIR0Cwoq08/2TQdX2UKGgGR0CIKw/47A+IaAdN6ANoCEdAsKMmWRigCnV9lChoBkdAkMHfQOWjXWgHTegDaAhHQLCjituk1uR1fZQoaAZHQJNwqMUAT7FoB03oA2gIR0CwpPF4HHFQdX2UKGgGR0CdpB8EFGG3aAdN6ANoCEdAsKkOglF+eHV9lChoBkdAmlReAEt/WmgHTegDaAhHQLCpx8vVVgh1fZQoaAZHQJdVcdKdxyZoB03oA2gIR0CwqmLeyiVTdX2UKGgGR0CV4C17pmmMaAdN6ANoCEdAsKzB03fhuXV9lChoBkdAktvWepXIVGgHTegDaAhHQLCxq/IbOu91fZQoaAZHQHKGsKw6hg5oB03oA2gIR0CwsixIFvAHdX2UKGgGR0CVHuHqNZNgaAdN6ANoCEdAsLKXBN21UnV9lChoBkdAlYNkWRA8jmgHTegDaAhHQLC0DQgs9Sx1fZQoaAZHQJzEUJ0GNaRoB03oA2gIR0CwuDfQOWjXdX2UKGgGR0Cajj+h4+r3aAdN6ANoCEdAsLjfB55Z83V9lChoBkdAk1oQazeGf2gHTegDaAhHQLC5gchkiEB1fZQoaAZHQIPFM1Q66rhoB03oA2gIR0Cwu99+LFXJdX2UKGgGR0CZriofSx7iaAdN6ANoCEdAsMEO2VmjCnV9lChoBkdAmPpZBLPD52gHTegDaAhHQLDBjN1QqI91fZQoaAZHQJKgE9r433poB03oA2gIR0CwwfRsl9jPdX2UKGgGR0CV9wcc2itaaAdN6ANoCEdAsMNqswL3K3V9lChoBkdAk5iBwZOzp2gHTegDaAhHQLDHfpXIU8F1fZQoaAZHQJhXWjk+5e9oB03oA2gIR0Cwx/i+xnnMdX2UKGgGR0CCTZmVZ9uxaAdN6ANoCEdAsMhqOktVaXV9lChoBkdAk2UnAymALGgHTegDaAhHQLDKoiCrcTJ1fZQoaAZHQJEH3pB5X2doB03oA2gIR0Cw0F77XQMQdX2UKGgGR0Bx4SCaqjrSaAdN6ANoCEdAsNDg3GXHBHV9lChoBkdAhAqxHww0wmgHTegDaAhHQLDRTNo8IRh1fZQoaAZHQHJxA8GLUCtoB03oA2gIR0Cw0tB+vyLAdX2UKGgGR0BudrBKtga4aAdN6ANoCEdAsNcOfWcz7HV9lChoBkdAcULfW+XZ5GgHTegDaAhHQLDXiaMrEtN1fZQoaAZHQI3kWGdqcmVoB03oA2gIR0Cw1/UwBYFJdX2UKGgGR0CbVLNyYG+saAdN6ANoCEdAsNon0TURWnV9lChoBkdAnF7+IMz/ImgHTegDaAhHQLDf8aqS5iF1fZQoaAZHQHFOth/iHZdoB03oA2gIR0Cw4G/siSq3dX2UKGgGR0Cci1dRiw0PaAdN6ANoCEdAsODUSuhbn3V9lChoBkdAmUI0py6tkmgHTegDaAhHQLDiQ3Sa3JB1fZQoaAZHQJ2sXv5P/JhoB03oA2gIR0Cw5kT8gpz+dX2UKGgGR0Ce68eD3/PxaAdN6ANoCEdAsOa+Kk2xZHV9lChoBkdAnGOb+cYqG2gHTegDaAhHQLDnJynUDuB1fZQoaAZHQJz1gBp5/spoB03oA2gIR0Cw6NQLiMo+dX2UKGgGR0CVhrNrCWNWaAdN6ANoCEdAsO71ix3V1HV9lChoBkdAmdi2912aD2gHTegDaAhHQLDvcfEGZ/l1fZQoaAZHQIr6HIMjNY9oB03oA2gIR0Cw79rKzRhMdX2UKGgGR0CdAr0EHMUzaAdN6ANoCEdAsPFKVs1sL3V9lChoBkdAnnEPmcOLBWgHTegDaAhHQLD1aETg2qF1fZQoaAZHQJR4udCmdiFoB03oA2gIR0Cw9eQf6oETdX2UKGgGR0Bt1GF6AvtdaAdN6ANoCEdAsPZOimEXcnV9lChoBkdAm0mRG+bmVGgHTegDaAhHQLD3xSG8Emp1fZQoaAZHQJ2pXBpHqeNoB03oA2gIR0Cw/gPoq0+ldX2UKGgGR0Ca5goJzDGcaAdN6ANoCEdAsP5+uMdcS3V9lChoBkdAm93J1eSjg2gHTegDaAhHQLD+5vw3HaN1fZQoaAZHQJkMVo24usdoB03oA2gIR0CxAFslw97odX2UKGgGR0Cb0TisXBP9aAdN6ANoCEdAsQRj3wkPc3V9lChoBkdAnF4lEy+HrWgHTegDaAhHQLEE4Jhvze51fZQoaAZHQJnfRzuF6AxoB03oA2gIR0CxBUsk+otMdX2UKGgGR0CcrzCemNzbaAdN6ANoCEdAsQa1xxT853V9lChoBkdAnu1kAggX/GgHTegDaAhHQLEMbr6ciGF1fZQoaAZHQJ08eJbdJrdoB03oA2gIR0CxDTm2LHdXdX2UKGgGR0CdVi7rcCYDaAdN6ANoCEdAsQ3eBAfMfXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2a2890832b6b32476158a088b5627e611c7995bbf1c5eb5f0807e7f19ac05c3
3
+ size 1085355
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1902.1885058951098, "std_reward": 153.2734383988303, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T07:58:51.383968"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f296890f68048cdda875afe6562bd1e195b800140f8d341c4d4190faa2e84f84
3
+ size 2129