File size: 1,700 Bytes
56a9632
 
e392e7b
 
 
 
56a9632
e392e7b
56a9632
e392e7b
56a9632
e392e7b
56a9632
 
 
 
e392e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
library_name: transformers
datasets:
- mlabonne/orpo-dpo-mix-40k
base_model:
- meta-llama/Llama-3.2-1B-Instruct
---
# ORPO-Tuned Llama2-1B-Instruct

NB: Done purely as a fine-tuning exercise. Not intedned for any practical use.

This model is a fine-tuned version of Meta's Llama-3.2-1B-Instruct using ORPO (Optimizing Reward with Policy Optimization). The model was trained to better align with human preferences using a curated preference dataset from mlabonne/orpo-dpo-mix-40k.


## Model Details

- **Base Model**: meta-llama/Llama-3.2-1B-Instruct
- **Training Method**: ORPO (Optimizing Reward with Policy Optimization) with LoRA
- **Training Dataset**: mlabonne/orpo-dpo-mix-40k (subset of 100 examples)
- **Framework**: Hugging Face Transformers, TRL, PEFT
- **Training Date**: November 2024
- **License**: Same as base model (Llama 2)

## Training Process

The model was fine-tuned using LoRA (Low-Rank Adaptation) with the following configuration:

### LoRA Parameters
- r=16 (rank)
- lora_alpha=32
- lora_dropout=0.05
- bias="none"
- task_type="CAUSAL_LM"

### Training Parameters
- Learning rate: 1e-5
- Batch size: 4
- Gradient accumulation steps: 4
- Maximum steps: 100
- Warmup steps: 10
- Gradient checkpointing: Enabled
- FP16 training: Enabled
- Maximum sequence length: 512
- Maximum prompt length: 512
- Optimizer: AdamW

## Evaluation Results

The model was evaluated on the HellaSwag benchmark with the following configuration:
- Batch size: 64 (auto-detected)
- Full evaluation set
- Zero-shot setting
- FP16 precision

Results:
| Metric | Value | Standard Error |
|--------|-------|---------------|
| Accuracy | 45.20% | ±0.50% |
| Normalized Accuracy | 60.78% | ±0.49% |