File size: 15,085 Bytes
9f3bef1
 
 
12250e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3bef1
 
 
 
2509365
 
 
 
12250e1
9f3bef1
12250e1
 
9f3bef1
 
 
 
 
12250e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3bef1
12250e1
 
 
 
 
9f3bef1
12250e1
9f3bef1
12250e1
9f3bef1
12250e1
9f3bef1
12250e1
9f3bef1
12250e1
9f3bef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0baa6cf
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
license: mit
base_model: xlm-roberta-base
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
metrics:
- f1
---

**⚠️ Warning: An updated version of this model is available [here](https://huggingface.co/segment-any-text/sat-12l-sm) This model is no longer maintained.**

**Please refer to our Segment any Text paper for more details: [https://arxiv.org/abs/2406.16678](https://arxiv.org/abs/2406.16678)**

# xlmr-multilingual-sentence-segmentation

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on a corrupted version of the universal dependency datasets.
It achieves the following results on the (also corrupted) evaluation set:
- Loss: 0.0074
- Precision: 0.9664
- Recall: 0.9677
- F1: 0.9670

# Test set performance

# Results

All results here are percentage F1:

## Opus100 [2]

Who wins most? XLM-RoBERTa: 56, WtPSplit: 12, Spacy (multilingual): 8


|                      | af        | am        | ar        | az        | be        | bg        | bn        | ca        | cs        | cy        | da        | de        | el        | en        | eo        | es        | et        | eu        | fa        | fi        | fr        | fy        | ga        | gd        | gl        | gu        | ha        | he        | hi        | hu        | hy        | id        | is        | it        | ja        | ka        | kk        | km        | kn        | ko        | ku        | ky        | lt        | lv        | mg        | mk        | ml        | mn        | mr        | ms        | my        | ne        | nl        | pa        | pl        | ps        | pt        | ro        | ru        | si        | sk        | sl        | sq        | sr        | sv        | ta        | te        | th        | tr        | uk        | ur        | uz        | vi        | xh        | yi        | zh        |
|:---------------------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|
| Spacy (multilingual) | 42.61     | 6.69      | 58.52     | 73.59     | 34.78     | 93.74     | 38.04     | 88.76     | 87.70     | 26.30     | 90.52     | 74.15     | 89.75     | 89.25     | 88.77     | 90.95     | 87.26     | 81.20     | 55.40     | 93.28     | 85.77     | 21.49     | 60.61     | 36.83     | 88.77     | 5.59      | **89.39** | **92.21** | 53.33     | 93.26     | 24.14     | 90.13     | **95.38** | 86.32     | 0.20      | 38.24     | 42.39     | 0.10      | 9.66      | 51.79     | 27.64     | 21.77     | 76.91     | 77.02     | 83.60     | **93.74** | 39.09     | 33.23     | 86.56     | 87.39     | 0.10      | 6.59      | **93.65** | 5.26      | 92.42     | 2.41      | 92.07     | 91.63     | 75.95     | 75.91     | 92.13     | 93.00     | **92.96** | **95.01** | 93.52     | 36.97     | 64.59     | 21.64     | **94.05** | 89.68     | 29.17     | 64.99     | 90.59     | 64.89     | 4.14      | 0.09      |
| WtPSplit             | 76.90     | **59.08** | 68.08     | 76.42     | 71.29     | 93.97     | 79.76     | 89.79     | 89.36     | 73.21     | 90.02     | 80.74     | 92.80     | 91.91     | 92.24     | 92.11     | 84.47     | 87.24     | 59.97     | 91.96     | 88.53     | 65.84     | 79.49     | 83.33     | 90.31     | **70.51** | 82.43     | 90.58     | 66.70     | 93.00     | 87.14     | 89.80     | 94.77     | 87.43     | **41.79** | **91.26** | 73.25     | **69.54** | 68.98     | 56.21     | **79.12** | 83.94     | 81.33     | 82.70     | **89.33** | 92.87     | 80.81     | 73.26     | 89.20     | 88.51     | **65.54** | **71.33** | 92.63     | 64.11     | 92.72     | **62.84** | 91.05     | 90.91     | 84.23     | 80.32     | 92.30     | 92.19     | 90.32     | 94.76     | 92.08     | 63.48     | 76.49     | 68.88     | 93.30     | 89.60     | 52.59     | **77.79** | 91.29     | 80.28     | **75.70** | 71.64     |
| XLM-RoBERTa (ours)   | **83.97** | 41.59     | **81.56** | **81.30** | **85.68** | **94.34** | **84.10** | **91.80** | **91.23** | **78.72** | **92.64** | **86.73** | **93.87** | **94.50** | **94.57** | **93.18** | **90.19** | **90.28** | **74.79** | **94.06** | **90.46** | **81.76** | **84.33** | **85.62** | **92.55** | 67.26     | 86.61     | 91.22     | **72.69** | **94.53** | **89.83** | **92.24** | 93.78     | **89.27** | 41.43     | 78.39     | **89.15** | 36.60     | **70.51** | **82.77** | 58.14     | **89.41** | **89.99** | **88.25** | 86.82     | 92.81     | **86.14** | **94.73** | **93.25** | **92.44** | 49.39     | 66.02     | 93.60     | **69.22** | **93.51** | 61.86     | **92.84** | **93.19** | **89.47** | **86.24** | **92.95** | **93.46** | 91.79     | 94.16     | **93.93** | **72.74** | **81.77** | **74.49** | 93.17     | **92.15** | **62.92** | 75.65     | **93.41** | **84.89** | 56.85     | **77.07** |


## Universal Dependencies [3]

Who wins most? XLM-RoBERTa: 24, WtPSplit: 17 Spacy (multilingual): 13


|                      | af        | ar        | be        | bg        | bn        | ca        | cs        | cy        | da        | de        | el        | en        | es        | et        | eu        | fa        | fi        | fr        | ga        | gd        | gl        | he        | hi        | hu        | hy        | id        | is        | it        | ja        | jv        | kk        | ko        | la        | lt        | lv        | mr        | nl        | pl        | pt        | ro        | ru        | sk        | sl        | sq         | sr        | sv        | ta        | th        | tr        | uk        | ur        | vi        | zh        |
|:---------------------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:-----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|
| Spacy (multilingual) | **98.47** | 80.38     | 80.27     | 93.62     | 51.85     | **98.95** | 89.68     | 98.89     | 94.96     | 88.02     | 94.16     | 92.20     | **98.70** | 93.77     | 95.79     | **99.83** | 92.88     | 96.33     | **96.67** | 63.04     | 92.37     | 94.37     | 0.32      | **98.45** | 11.39     | 98.01     | **95.41** | 92.49     | 0.37      | 98.03     | 96.21     | **99.80** | 0.09      | 93.86     | **98.52** | 92.13     | 92.86     | 97.02     | 94.91     | **98.05** | 84.31     | 90.26     | **98.23** | **100.00** | 97.84     | 94.91     | 66.67     | 1.95      | **97.63** | 94.16     | 0.37      | 96.40     | 0.40      |
| WtPSplit             | 98.27     | **83.00** | 89.28     | **98.16** | **99.12** | 98.52     | 92.98     | **99.26** | 94.56     | 96.13     | **96.94** | 94.73     | 97.60     | 94.09     | 97.24     | 97.29     | 94.69     | **96.71** | 86.60     | 72.17     | **98.87** | 95.79     | 96.78     | 96.08     | **96.80** | **98.41** | 86.39     | 95.45     | **95.84** | **98.18** | 96.28     | 99.11     | 91.43     | **97.67** | 96.42     | 91.84     | 93.61     | 95.92     | **96.13** | 81.50     | 86.28     | 95.57     | 96.85     | 99.17      | **98.45** | **95.86** | **97.54** | 70.26     | 96.00     | 92.08     | 93.79     | 92.97     | **97.25** |
| XLM-RoBERTa (ours)   | 96.81     | 78.99     | **91.60** | 97.89     | **99.12** | 95.99     | **96.05** | 97.17     | **96.62** | **96.29** | 94.33     | **94.76** | 95.73     | **96.20** | **97.37** | 97.49     | **96.34** | 95.70     | 89.78     | **84.20** | 95.72     | **95.95** | **97.51** | 96.24     | 95.62     | 97.22     | 92.93     | **96.88** | 94.23     | 96.29     | **98.40** | 97.46     | **96.35** | 95.82     | 96.91     | **95.92** | **96.27** | **97.24** | 95.83     | 94.63     | **91.59** | **95.88** | 96.43     | 98.36      | 96.83     | 94.95     | 95.93     | **89.26** | 96.52     | **94.59** | **96.20** | **97.31** | 95.12     |

## Ersatz [4]

Who wins most? XLM-RoBERTa: 10, WtPSplit: 8, Spacy (multilingual): 4


|                      | ar        | cs        | de        | en        | es        | et        | fi        | fr        | gu        | hi        | ja        | kk        | km        | lt        | lv        | pl        | ps        | ro        | ru        | ta        | tr        | zh        |
|:---------------------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|
| Spacy (multilingual) | **91.26** | 96.46     | 93.89     | 94.40     | 97.31     | **97.15** | 94.99     | 96.43     | 4.44      | 18.41     | 0.18      | 97.11     | 0.08      | 93.53     | **98.73** | 93.69     | **94.44** | 94.87     | 93.45     | 68.65     | 95.39     | 0.10      |
| WtPSplit             | 89.45     | 93.41     | 95.93     | **97.16** | **98.74** | 95.84     | 97.10     | **97.61** | 90.62     | 94.87     | **82.14** | 95.94     | **82.89** | **96.74** | 97.22     | 95.16     | 86.99     | **97.55** | **97.82** | 94.76     | 93.53     | 89.02     |
| XLM-RoBERTa (ours)   | 79.78     | **96.94** | **97.02** | 96.10     | 97.06     | 96.80     | **97.67** | 96.33     | **93.73** | **95.34** | 77.54     | **97.28** | 78.94     | 96.13     | 96.45     | **96.71** | 92.33     | 96.24     | 97.15     | **95.94** | **95.76** | **90.11** |

## German--English code-switching [5]

|                      | de        |
|:---------------------|:----------|
| Spacy (multilingual) | 79.55     |
| WtPSplit             | 77.41     |
| XLM-RoBERTa (ours)   | **85.78** |

[1] [Where’s the Point? Self-Supervised Multilingual Punctuation-Agnostic Sentence Segmentation](https://aclanthology.org/2023.acl-long.398) (Minixhofer et al., ACL 2023)

[2] [Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation](https://aclanthology.org/2020.acl-main.148) (Zhang et al., ACL 2020)

[3] [Universal Dependencies](https://aclanthology.org/2021.cl-2.11) (de Marneffe et al., CL 2021)

[4] [A unified approach to sentence segmentation of punctuated text in many languages](https://aclanthology.org/2021.acl-long.309) (Wicks & Post, ACL-IJCNLP 2021)

[5] [The Denglisch Corpus of German-English Code-Switching](https://aclanthology.org/2023.sigtyp-1.5) (Osmelak & Wintner, SIGTYP 2023)

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| No log        | 0.2   | 100  | 0.0125          | 0.9320    | 0.9487 | 0.9403 |
| No log        | 0.4   | 200  | 0.0099          | 0.9547    | 0.9513 | 0.9530 |
| No log        | 0.6   | 300  | 0.0092          | 0.9616    | 0.9506 | 0.9561 |
| No log        | 0.81  | 400  | 0.0083          | 0.9584    | 0.9618 | 0.9601 |
| 0.0212        | 1.01  | 500  | 0.0082          | 0.9551    | 0.9642 | 0.9596 |
| 0.0212        | 1.21  | 600  | 0.0084          | 0.9630    | 0.9614 | 0.9622 |
| 0.0212        | 1.41  | 700  | 0.0079          | 0.9606    | 0.9648 | 0.9627 |
| 0.0212        | 1.61  | 800  | 0.0077          | 0.9609    | 0.9661 | 0.9635 |
| 0.0212        | 1.81  | 900  | 0.0076          | 0.9623    | 0.9649 | 0.9636 |
| 0.0067        | 2.02  | 1000 | 0.0077          | 0.9598    | 0.9689 | 0.9643 |
| 0.0067        | 2.22  | 1100 | 0.0075          | 0.9614    | 0.9680 | 0.9647 |
| 0.0067        | 2.42  | 1200 | 0.0073          | 0.9626    | 0.9682 | 0.9654 |
| 0.0067        | 2.62  | 1300 | 0.0075          | 0.9617    | 0.9692 | 0.9654 |
| 0.0067        | 2.82  | 1400 | 0.0073          | 0.9658    | 0.9648 | 0.9653 |
| 0.0054        | 3.02  | 1500 | 0.0076          | 0.9656    | 0.9663 | 0.9660 |
| 0.0054        | 3.23  | 1600 | 0.0073          | 0.9625    | 0.9703 | 0.9664 |
| 0.0054        | 3.43  | 1700 | 0.0073          | 0.9658    | 0.9659 | 0.9658 |
| 0.0054        | 3.63  | 1800 | 0.0073          | 0.9626    | 0.9707 | 0.9666 |
| 0.0054        | 3.83  | 1900 | 0.0073          | 0.9659    | 0.9677 | 0.9668 |
| 0.0046        | 4.03  | 2000 | 0.0075          | 0.9671    | 0.9659 | 0.9665 |
| 0.0046        | 4.23  | 2100 | 0.0075          | 0.9654    | 0.9687 | 0.9671 |
| 0.0046        | 4.44  | 2200 | 0.0075          | 0.9662    | 0.9676 | 0.9669 |
| 0.0046        | 4.64  | 2300 | 0.0074          | 0.9657    | 0.9684 | 0.9670 |
| 0.0046        | 4.84  | 2400 | 0.0074          | 0.9664    | 0.9678 | 0.9671 |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2

# Citation

Please consider citing our paper if this model has helped you:

```
@inproceedings{frohman-etal-2024-segment,
    title = "Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation",
    author={Markus Frohmann and Igor Sterner and Ivan Vulić and Benjamin Minixhofer and Markus Schedl},
    month = nov,
    year = "2024",
    publisher = "Association for Computational Linguistics",
}
```